Learn R Programming

frailtypack (version 2.2-13)

print.jointPenal: Print a Short Summary of parameter estimates of a joint frailty model

Description

Prints a short summary of parameter estimates of a joint frailty model, or more generally an object of class 'frailtyPenal' for joint frailty models.

Usage

## S3 method for class 'jointPenal':
print(x, digits = max(options()$digits - 4, 3), ...)

Arguments

x
the result of a call to the jointPenal function
digits
number of digits to print
...
other unusued arguments

Value

  • Print, separately for each type of event (recurrent and terminal), the parameter estimates of the survival or hazard functions.
  • nthe number of observations used in the fit.
  • n.groupsthe maximum number of groups used in the fit
  • n.eventsthe number of events observed in the fit
  • thetavariance of the common frailty term
  • alphathe coefficient associated with the frailty parameter terminal event hazard function
  • coefthe coefficients of the linear predictor, which multiply the columns of the model matrix.
  • varHthe variance matrix of theta and of the coefficients.
  • varHIHthe robust estimation of the variance matrix of theta and of the coefficients.
  • SE(H)the standard error of the estimaes deduced from the variance matrix of theta and of the coefficients.
  • SE(HIH)the standard error of the estimaes deduced from the robust estimation of the variance matrix of theta and of the coefficients.
  • pp-value

See Also

summary.jointPenal, frailtyPenal for Joint frailty models,plot.jointPenal

Examples

Run this code
# /*** Joint frailty model ***/
 

data(readmission)

## Gap-time ##
modJoint_gap<-frailtyPenal(Surv(time,event)~cluster(id)+sex+as.factor(dukes)
		+as.factor(charlson)+terminal(death),
		formula.terminalEvent=~sex+as.factor(dukes)+as.factor(charlson),
		data=readmission,n.knots=14,kappa1=9550000000,
		kappa2=1410000000000,Frailty=TRUE,joint=TRUE,recurrentAG=FALSE)

    
 # It takes around 1 minute to converge.#

  print(modJoint_gap)

Run the code above in your browser using DataLab