#Example y input
n=50 # sample size
t=seq(0,1,length.out=100) # length of data
x = matrix(runif(n),n)
theta1 = theta2 = array(0,n)
for(i in 1:n){
theta1[i] = rnorm(1,x[i],x[i]^2)
theta2[i] = rnorm(1,x[i]/2,(1-x[i])^2)
}
y = matrix(0,n,length(t))
phi1 = sqrt(3)*t
phi2 = sqrt(6/5)*(1-t/2)
y = theta1%*%t(phi1) + theta2 %*% t(phi2)
xout = matrix(c(0.25,0.5,0.75),3)
Cov_est=GloCovReg(x=x,y=y,xout=xout,optns=list(corrOut=FALSE,metric="power",alpha=3))
#Example M input
n=10 #sample size
m=5 # dimension of covariance matrices
M <- array(0,c(m,m,n))
for (i in 1:n){
y0=rnorm(m)
aux<-diag(m)+y0%*%t(y0)
M[,,i]<-aux
}
x=cbind(matrix(rnorm(n),n),matrix(rnorm(n),n)) #vector of predictor values
xout=cbind(runif(3),runif(3)) #output predictor levels
Cov_est=GloCovReg(x=x,M=M,xout=xout,optns=list(corrOut=FALSE,metric="power",alpha=3))
Run the code above in your browser using DataLab