# \donttest{
n=100
alpha_n=sqrt(n)
alpha1=2.0
beta1=1.0
gridQ=seq(0,1,length.out=500+2)[2:(500+1)]
X=runif(n,0,1)#p=1
tau=matrix(0,nrow=n,ncol=1)
for(i in 1:n){
tau[i]=alpha1+beta1*X[i]+truncnorm::rtruncnorm(1, a=-0.3, b=0.3, mean = 0, sd = 1.0)
}
Ni_n=matrix(0,nrow=n,ncol=1)
u0=0.4
u1=0.5
u2=0.05
u3=-0.01
tin=list()
for(i in 1:n){
Ni_n[i]=rpois(1,alpha_n*tau[i])
mu_x=u0+u1*X[i]+truncnorm::rtruncnorm(1,a=-0.1,b=0.1,mean=0,sd=1)
sd_x=u2+u3*X[i]+truncnorm::rtruncnorm(1,a=-0.02,b=0.02,mean=0,sd=0.5)
if(Ni_n[i]==0){
tin[[i]]=c()
}else{
tin[[i]]=truncnorm::rtruncnorm(Ni_n[i],a=0,b=1,mean=mu_x,sd=sd_x) #Sample from truncated normal
}
}
res=GloPointPrReg(
xin=matrix(X,ncol=1),tin=tin,
T0=1,xout=matrix(seq(0,1,length.out=10),ncol=1),
optns=list(bwDen=0.1)
)
# }
Run the code above in your browser using DataLab