.[as.free("x"), as.free("y")]
.[abc(1:6),"z"]
x <- rfree()
y <- rfree()
z <- rfree()
.[x,y] == -x-y+x+y # should be TRUE
abelianize(.[x,y])
## Jacobi identity _not_ satisfied with this definition:
is.id(.[x,.[y,z]] + .[y,.[z,x]] + .[z,.[x,y]])
## But the Hall-Witt identity is:
all(is.id(.[.[x,-y],z]^y + .[.[y,-z],x]^z + .[.[z,-x],y]^x))
Run the code above in your browser using DataLab