Learn R Programming

freqdom.fda (version 1.0.1)

Functional Time Series: Dynamic Functional Principal Components

Description

Implementations of functional dynamic principle components analysis. Related graphic tools and frequency domain methods. These methods directly use multivariate dynamic principal components implementation, following the guidelines from Hormann, Kidzinski and Hallin (2016), Dynamic Functional Principal Component .

Copy Link

Version

Install

install.packages('freqdom.fda')

Monthly Downloads

91

Version

1.0.1

License

GPL-3

Maintainer

Lukasz Kidzinski

Last Published

April 19th, 2022

Functions in freqdom.fda (1.0.1)

fts.plot.covariance

Contour plot for the kernels of cross-covariance operators.
freqdom.fda-package

Functional time series: dynamic FPCA
fts.cov.structure

Estimate autocovariance and cross-covariances operators
fts.dpca.KLexpansion

Dynamic KL expansion
fts.dpca.var

Proportion of variance explained by dynamic principal components
fts.timedom

Object of class fts.timedom
fts.dpca.filters

Functional dynamic PCA filters
fts.dpca.scores

Functional dynamic principal component scores
fts.plot.filters

Plot kernels
fts.dpca

Compute Functional Dynamic Principal Components and dynamic Karhunen Loeve extepansion
fts.timedom.trunc

Truncate functional timedom object
pm10

PM10 dataset
fts.plot.operators

Contour plot of operator kernels.
fts.spectral.density

Functional spectral and cross-spectral density operator
fts.rma

Simulate functional moving average processes
is.fts.freqdom

Checks if an object belongs to the class fts.freqdom
fts.freqdom

Creates an object of class fts.freqdom.
is.fts.timedom

Checks if an object belongs to the class fts.timedom
fts.rar

Simulate functional autoregressive processes