Consider a linear regression problem for a multivariate stationary time series X_t:
dim.est
suggest such level by taking only the eigenvalues which are greater
and equal than
reg.dim.est(eigenvalues, n, Kconst = 1)
vector of eigenvalues
used for estimation
parameter for fitting the convergence rate to 1/(Kconst*n^1/2)
number of 'safe' eigendirections
Siegfried Hormann and Lukasz Kidzinski A note on estimation in Hilbertian linear models Research report, 2012
# NOT RUN {
n = 100
X = rar(n)
Y = rar(n)
CV = lagged.cov(X,Y)
E = eigen(CV)
K = reg.dim.est(E$values, n)
# }
Run the code above in your browser using DataLab