frmaExpressionSet
class is derived from
ExpressionSet
, and requires a matrix named exprs
and optionally matrices named se.exprs
, weights
, and residuals
.ExpressionSet
.new("frmaExpressionSet",
exprs = new("matrix"),
se.exprs = new("matrix"),
weights=new("matrix"),
residuals=new("matrix"),
randomeffects=new("matrix"),
phenoData = new("AnnotatedDataFrame"),
featureData = new("AnnotatedDataFrame"),
experimentData = new("MIAME"),
annotation = new("character"),
...)
This creates a frmaExpressionSet
with assayData
implicitly created to contain exprs
and se.exprs
. The
only required named arguments is exprs
. Three optional named
matrices, weights
, residuals
, and randomeffects
can be added to the object. new("frmaExpressionSet",
assayData = assayDataNew(exprs=new("matrix"),se.exprs=new("matrix")),
weights=new("matrix"),
residuals=new("matrix"),
randomeffects=new("matrix"),
phenoData = new("AnnotatedDataFrame"),
featureData = new("AnnotatedDataFrame"),
experimentData = new("MIAME"),
annotation = new("character"),
...)
This creates a frmaExpressionSet
with assayData
provided
explicitly. In this form, the only required named argument is
assayData
. Three optional named matrices, weights
,
residuals
, and randomeffects
can be added to the object.se.exprs
:weights
:residuals
:randomeffects
:ExpressionSet
:
assayData
:nrow(phenoData)
. assayData
must contain a matrix
exprs
with rows representing features and columns
representing samples. It may also contain a matrix se.exprs
containing standard errors.phenoData
:eSet
annotation
:eSet
featureData
:eSet
experimentData
:eSet
se.exprs(frmaExpressionSet)
se.exprs
in the AssayData-class
slot.weights(frmaExpressionSet)
weights
residuals(frmaExpressionSet)
residuals
randomeffects(frmaExpressionSet)
randomeffects
ExpressionSet
).eSet-class
, ExpressionSet-class
, frma
.
# create an instance of frmaExpressionSet
new("frmaExpressionSet")
Run the code above in your browser using DataLab