frmaExpressionSet class is derived from
ExpressionSet, and requires a matrix named exprs
and optionally matrices named se.exprs, weights, and residuals.ExpressionSet.new("frmaExpressionSet",
exprs = new("matrix"),
se.exprs = new("matrix"),
weights=new("matrix"),
residuals=new("matrix"),
randomeffects=new("matrix"),
phenoData = new("AnnotatedDataFrame"),
featureData = new("AnnotatedDataFrame"),
experimentData = new("MIAME"),
annotation = new("character"),
...)
This creates a frmaExpressionSet with assayData
implicitly created to contain exprs and se.exprs. The
only required named arguments is exprs. Three optional named
matrices, weights, residuals, and randomeffects
can be added to the object. new("frmaExpressionSet",
assayData = assayDataNew(exprs=new("matrix"),se.exprs=new("matrix")),
weights=new("matrix"),
residuals=new("matrix"),
randomeffects=new("matrix"),
phenoData = new("AnnotatedDataFrame"),
featureData = new("AnnotatedDataFrame"),
experimentData = new("MIAME"),
annotation = new("character"),
...)
This creates a frmaExpressionSet with assayData provided
explicitly. In this form, the only required named argument is
assayData. Three optional named matrices, weights,
residuals, and randomeffects can be added to the object.se.exprs:weights:residuals:randomeffects:ExpressionSet:
assayData:nrow(phenoData). assayData must contain a matrix
exprs with rows representing features and columns
representing samples. It may also contain a matrix se.exprs
containing standard errors.phenoData:eSetannotation:eSetfeatureData:eSetexperimentData:eSetse.exprs(frmaExpressionSet)se.exprs in the AssayData-class slot.weights(frmaExpressionSet)weightsresiduals(frmaExpressionSet)residualsrandomeffects(frmaExpressionSet)randomeffectsExpressionSet).eSet-class, ExpressionSet-class, frma.
# create an instance of frmaExpressionSet
new("frmaExpressionSet")
Run the code above in your browser using DataLab