# NOT RUN {
# Load traffic data
data(traffic.mini)
# Scaling is sometimes useful for feature selection
# Exclude the first column - it contains timestamps
data <- scale(traffic.mini$data[,-1])
mIndep<-fsMTS(data, max.lag=3, method="ownlags")
mCCF<-fsMTS(data, max.lag=3, method="CCF")
mDistance<-fsMTS(data, max.lag=3, method="distance", shortest = traffic.mini$shortest, step = 5)
mGLASSO<-fsMTS(data, max.lag=3,method="GLASSO", rho = 0.05)
mLARS<-fsMTS(data, max.lag=3,method="LARS")
mRF<-fsMTS(data, max.lag=3,method="RF")
mMI<-fsMTS(data, max.lag=3,method="MI")
mlist <- list(Independent = mIndep,
Distance = mDistance,
CCF = mCCF,
GLASSO = mGLASSO,
LARS = mLARS,
RF = mRF,
MI = mMI)
(msimilarity <- fsSimilarityMatrix(mlist,threshold = 0.3, method="Kuncheva"))
# }
Run the code above in your browser using DataLab