Learn R Programming

fscaret (version 0.9.3)

impCalc: impCalc

Description

impCalc function is designed to scale variable importance according to MSE and RMSE calculations. It also stores the raw MSE and RMSE derived from models. impCalc function shouldn't be used alone unless user has trained models from caret package in RData files.

Usage

impCalc(skel_outfile, xTest, yTest, lk_col,labelsFrame,with.labels,regPred,classPred)

Arguments

skel_outfile
Skeleton name of output file
xTest
Input vector of testing data set
yTest
Output vector of testing data set
lk_col
Number of columns of whole data set
labelsFrame
Labels to sort variable importance
with.labels
Pass with.labels argument. It is advised to ALWAYS use labels as in some cases VarImp returns importance in descending values. If you insist turning with.labels FALSE, then make sure data base contains pure data and you read it (read.csv) to data.frame wi
regPred
Indicating if regression predictions are computed. Possible values TRUE/FALSE. If regPred is set TRUE, then classPred should be set FALSE.
classPred
Indicating if classification predictions are computed. Possible values TRUE/FALSE. If classPred is set TRUE, then regPred should be set FALSE. Please be advised that importance is scaled according to F-measure.

Details

impCalc function lists RData files in working directory assuming there are only models derived by caret. In a loop function loads models and tries to get the variable importance.

Examples

Run this code
# 
# Hashed to comply with new CRAN check
# 
library(fscaret)

# Read working directory
myWD <- getwd()

# Set working directory to tmp
setwd(tempdir())

# Load dataset
data(dataset.train)
data(dataset.test)

# Make objects
trainDF <- dataset.train
testDF <- dataset.test
model <- c("lm","pls","pcr")
fitControl <- trainControl(method = "boot", returnResamp = "all") 
myTimeLimit <- 5
no.cores <- 2
supress.output <- TRUE
skel_outfile <- paste("_default_",sep="")
mySystem <- .Platform$OS.type
with.labels <- TRUE
redPred <- TRUE
classPred <- FALSE

if(mySystem=="windows"){
no.cores <- 1
}

# Scan dimensions of trainDF [lk_row x lk_col]
lk_col = ncol(trainDF)
lk_row = nrow(trainDF)

# Read labels of trainDF
labelsFrame <- as.data.frame(colnames(trainDF))
labelsFrame <-cbind(c(1:ncol(trainDF)),labelsFrame)
# Create a train data set matrix
trainMatryca_nr <- matrix(data=NA,nrow=lk_row,ncol=lk_col)

row=0
col=0

for(col in 1:(lk_col)) {
   for(row in 1:(lk_row)) {
     trainMatryca_nr[row,col] <- (as.numeric(trainDF[row,col]))
    }
}

# Pointing standard data set train
xTrain <- data.frame(trainMatryca_nr[,-lk_col])
yTrain <- as.vector(trainMatryca_nr[,lk_col])


#--------Scan dimensions of trainDataFrame1 [lk_row x lk_col]
lk_col_test = ncol(testDF)
lk_row_test = nrow(testDF)

testMatryca_nr <- matrix(data=NA,nrow=lk_row_test,ncol=lk_col_test)

row=0
col=0

for(col in 1:(lk_col_test)) {
   for(row in 1:(lk_row_test)) {
     testMatryca_nr[row,col] <- (as.numeric(testDF[row,col]))
    }
}

# Pointing standard data set test
xTest <- data.frame(testMatryca_nr[,-lk_col])
yTest <- as.vector(testMatryca_nr[,lk_col])


# Calling lower function to create models to calculate on
myVarImp <- regVarImp(model, xTrain, yTrain, xTest,
	    fitControl, myTimeLimit, no.cores, lk_col,
	    supress.output, mySystem)


myImpCalc <- impCalc(skel_outfile, xTest, yTest, lk_col,labelsFrame,with.labels,redPred,classPred)

Run the code above in your browser using DataLab