dataPreprocess

0th

Percentile

dataPreprocess

The functionality is realized in two main steps:

  1. Check for near zero variance predictors and flag as near zero if:

    1. the percentage of unique values is less than 20

    2. the ratio of the most frequent to the second most frequent value is greater than 20,

  2. Check for susceptibility to multicollinearity

    1. Calculate correlation matrix

    2. Find variables with correlation 0.9 or more and delete them

Keywords
robust, univar
Usage
dataPreprocess(trainMatryca_nr, testMatryca_nr, labelsFrame, lk_col, lk_row, with.labels)
Arguments
trainMatryca_nr

Input training data matrix

testMatryca_nr

Input testing data matrix

labelsFrame

Transposed data frame of column names

lk_col

Number of columns

lk_row

Number of rows

with.labels

If with.labels=TRUE, additional data frame with preprocessed inputs corresponding to original data set column numbers as output is generated

References

Kuhn M. (2008) Building Predictive Models in R Using the caret Package Journal of Statistical Software 28(5) http://www.jstatsoft.org/.

Aliases
  • dataPreprocess
Examples
# NOT RUN {

library(fscaret)

# Create data sets and labels data frame
trainMatrix <- matrix(rnorm(150*120,mean=10,sd=1), 150, 120)

# Adding some near-zero variance attributes

temp1 <- matrix(runif(150,0.0001,0.0005), 150, 12)

# Adding some highly correlated attributes

sampleColIndex <- sample(ncol(trainMatrix), size=10)

temp2 <- matrix(trainMatrix[,sampleColIndex]*2, 150, 10)

# Output variable

output <- matrix(rnorm(150,mean=10,sd=1), 150, 1)

trainMatrix <- cbind(trainMatrix,temp1,temp2, output)

colnames(trainMatrix) <- paste("X",c(1:ncol(trainMatrix)),sep="")

# Subset test data set

testMatrix <- trainMatrix[sample(round(0.1*nrow(trainMatrix))),]

labelsDF <- data.frame("Labels"=paste("X",c(1:(ncol(trainMatrix)-1)),sep=""))

lk_col <- ncol(trainMatrix)
lk_row <- nrow(trainMatrix)

with.labels = TRUE

testRes <- dataPreprocess(trainMatrix, testMatrix,
			  labelsDF, lk_col, lk_row, with.labels)
			  
summary(testRes)

# Selected attributes after data set preprocessing
testRes$labelsDF

# Training and testing data sets after preprocessing
testRes$trainMatryca
testRes$testMatryca

# }
Documentation reproduced from package fscaret, version 0.9.4.4, License: GPL-2 | GPL-3

Community examples

Looks like there are no examples yet.