if (FALSE) {
## The X data have been introduced by Gordaliza, Garcia-Escudero & Mayo-Iscar (2013).
## The dataset presents two parallel components without contamination.
data(X)
y1 = X[, ncol(X)]
X1 = X[,-ncol(X), drop=FALSE]
(out <- tclustreg(y1, X1, k=2, alphaLik=0.05, alphaX=0.01, restrfactor=5, plot=TRUE, trace=TRUE))
(out <- tclustreg(y1, X1, k=2, alphaLik=0.05, alphaX=0.01, restrfactor=2,
mixt=2, plot=TRUE, trace=TRUE))
## Examples with fishery data
data(fishery)
X <- fishery
## some jittering is necessary because duplicated units are not treated:
## this needs to be addressed
X <- X + 10^(-8) * abs(matrix(rnorm(nrow(X)*ncol(X)), ncol=2))
y1 <- X[, ncol(X)]
X1 <- X[, -ncol(X), drop=FALSE]
(out <- tclustreg(y1, X1, k=3, restrfact=50, alphaLik=0.04, alphaX=0.01, trace=TRUE))
## Example 2:
## Define some arbitrary weightssome arbitrary weights for the units
we <- sqrt(X1)/sum(sqrt(X1))
## tclustreg required parameters
k <- 2; restrfact <- 50; alpha1 <- 0.04; alpha2 <- 0.01
## Now tclust is run on each combination of mixt and wtrim options
cat("\nmixt=0; wtrim=0",
"\nStandard tclustreg, with classification likelihood and without thinning\n")
(out <- tclustreg(y1, X1, k=k, restrfact=restrfact, alphaLik=alpha1, alphaX=alpha2,
mixt=0, wtrim=0, trace=TRUE))
cat("\nmixt=2; wtrim=0",
"\nMixture likelihood, no thinning\n")
(out <- tclustreg(y1, X1, k=k, restrfact=restrfact, alphaLik=alpha1, alphaX=alpha2,
mixt=2, wtrim=0, trace=TRUE))
cat("\nmixt=0; wtrim=1",
"\nClassification likelihood, thinning based on user weights\n")
(out <- tclustreg(y1, X1, k=k, restrfact=restrfact, alphaLik=alpha1, alphaX=alpha2,
mixt=0, we=we, wtrim=1, trace=TRUE))
cat("\nmixt=2; wtrim=1",
"\nMixture likelihood, thinning based on user weights\n")
(out <- tclustreg(y1, X1, k=k, restrfact=restrfact, alphaLik=alpha1, alphaX=alpha2,
mixt=2, we=we, wtrim=1, trace=TRUE))
cat("\nmixt=0; wtrim=2",
"\nClassification likelihood, thinning based on retention probabilities\n")
(out <- tclustreg(y1, X1, k=k, restrfact=restrfact, alphaLik=alpha1, alphaX=alpha2,
mixt=0, wtrim=2, trace=TRUE))
cat("\nmixt=2; wtrim=2",
"\nMixture likelihood, thinning based on retention probabilities\n")
(out <- tclustreg(y1, X1, k=k, restrfact=restrfact, alphaLik=alpha1, alphaX=alpha2,
mixt=2, wtrim=2, trace=TRUE))
cat("\nmixt=0; wtrim=3",
"\nClassification likelihood, thinning based on bernoulli weights\n")
(out <- tclustreg(y1, X1, k=k, restrfact=restrfact, alphaLik=alpha1, alphaX=alpha2,
mixt=0, wtrim=3, trace=TRUE))
cat("\nmixt=2; wtrim=3",
"\nMixture likelihood, thinning based on bernoulli weights\n")
(out <- tclustreg(y1, X1, k=k, restrfact=restrfact, alphaLik=alpha1, alphaX=alpha2,
mixt=2, wtrim=3, trace=TRUE))
cat("\nmixt=0; wtrim=4",
"\nClassification likelihood, tandem thinning based on bernoulli weights\n")
(out <- tclustreg(y1, X1, k=k, restrfact=restrfact, alphaLik=alpha1, alphaX=alpha2,
mixt=0, wtrim=4, trace=TRUE))
cat("\nmixt=2; wtrim=4",
"\nMixture likelihood, tandem thinning based on bernoulli weights\n")
(out <- tclustreg(y1, X1, k=k, restrfact=restrfact, alphaLik=alpha1, alphaX=alpha2,
mixt=2, wtrim=4, trace=TRUE))
}
Run the code above in your browser using DataLab