summary
and print
functions for lm.pels.fit
and PVS.fit
.
# S3 method for lm.pels
print(x, ...)
# S3 method for PVS
print(x, ...)
# S3 method for lm.pels
summary(object, ...)
# S3 method for PVS
summary(object, ...)
The matched call.
The estimated intercept of the model.
The estimated vector of linear coefficients (beta.est
).
The number of non-zero components in beta.est
.
The indexes of the non-zero components in beta.est
.
The optimal value of the penalisation parameter (lambda.opt
).
The optimal value of the criterion function, i.e. the value obtained with lambda.opt
and vn.opt
(and w.opt
in the case of the PVS).
Minimum value of the penalised least-squares function. That is, the value obtained using beta.est
and lambda.opt
.
The penalty function used.
The criterion used to select the penalisation parameter and vn
.
The optimal value of vn
in the case of the lm.pels
object.
In the case of the PVS
objects, these functions also return
the optimal number of covariates required to construct the reduced model in the first step of the algorithm (w.opt
). This value is selected using the same criterion employed for selecting the penalisation parameter.
Output of the lm.pels.fit
or PVS.fit
functions (i.e. an object of the class lm.pels
or PVS
).
Further arguments.
Output of the lm.pels.fit
or PVS.fit
functions (i.e. an object of the class lm.pels
or PVS
).
German Aneiros Perez german.aneiros@udc.es
Silvia Novo Diaz snovo@est-econ.uc3m.es
lm.pels.fit
and PVS.fit
.