library(tibble)
library(sf)
set.seed(456)
# Generating some random points to create pgeometry objects by using spa_creator()
tbl = tibble(x = runif(10, min= 0, max = 30),
y = runif(10, min = 0, max = 30),
z = runif(10, min = 0, max = 50))
# Getting the convex hull on the points to clip plateau region objects during their constructions
pts <- st_as_sf(tbl, coords = c(1, 2))
ch <- st_convex_hull(do.call(c, st_geometry(pts)))
pregions <- spa_creator(tbl, base_poly = ch, fuzz_policy = "fcp", k = 2)
plot(pregions$pgeometry[[1]])
plot(pregions$pgeometry[[2]])
if (FALSE) {
# Showing the different types of returning values
spa_overlap(pregions$pgeometry[[1]], pregions$pgeometry[[2]])
spa_overlap(pregions$pgeometry[[1]], pregions$pgeometry[[2]], ret = "list")
spa_overlap(pregions$pgeometry[[1]], pregions$pgeometry[[2]], ret = "bool",
eval_mode = "soft_eval", lval = "mostly")
## Examples for evaluating the other fuzzy topological relationships
spa_meet(pregions$pgeometry[[1]], pregions$pgeometry[[2]], ret = "list")
spa_disjoint(pregions$pgeometry[[1]], pregions$pgeometry[[2]], ret = "list")
spa_equal(pregions$pgeometry[[1]], pregions$pgeometry[[2]], ret = "list")
spa_inside(pregions$pgeometry[[1]], pregions$pgeometry[[2]], ret = "list")
spa_contains(pregions$pgeometry[[1]], pregions$pgeometry[[2]], ret = "list")
}
Run the code above in your browser using DataLab