Learn R Programming

ftnonpar (version 0.1-88)

l1pmreg: Piecewise monotone nonparameric quantile regression

Description

Applies the generalized taut string method to quantile regression.

Usage

quantpmreg(y, beta = 0.5, squeezing.factor = 0.5, verbose = FALSE, localsqueezing = TRUE, DYADIC = TRUE, thr.const = 2, extrema.nr = -1, bandwidth = -1,SETTOMEAN = FALSE, method = 1, ...) l1pmreg(y, beta=0.5, squeezing.factor = 0.5, verbose = FALSE, localsqueezing = TRUE, DYADIC = TRUE, thr.const = 2, extrema.nr = -1, bandwidth = -1,SETTOMEAN = FALSE, method = 1, ...)

Arguments

y
observed values (ordered by value of independent variable)
beta
quantile. The default is 0.5 which corresponds to the robust taut string.
squeezing.factor
The amount of decrement applied to the bandwidthes
verbose
logical, if T progress (for each iteration) is illustrated grahically
localsqueezing
logical, if T (default) the bandwidth is changed locally.
DYADIC
logical, if T (default) the multiresolution criterion is only verified on intervals with dyadic endpoints.
thr.const
smoothing parameter for the multiresoultion criterion (should be approximately 2)
extrema.nr
if set to a positive integer an approximation with the specified number of local extreme values is calculated
bandwidth
if set to a positive value the specified bandwidth is used instead of the multiresolution criterion.
SETTOMEAN
logical, if T (default) the value of the taut string approximation at local extreme values is set to the mean or median of the observations on the interval where the extremum is taken.
method
The method used which can be 1 (quantile regression), 2 (usual taut string), 3 (logistic regression) and 4 (Poisson regression)
...
Passed to the plot command if verbose=T

Value

A list with components
y
The approximation of the given data
lambda
The final values of lambda
nmax
Number of local extreme values

References

D\"umbgen, L. and Kovac, A. (2003) Extensions of smoothing via taut strings

See Also

pmreg,frun