Learn R Programming

ftnonpar (version 0.1-88)

smdenreg: Piecewise monotone density estimation with smooth taut strings

Description

Applies the smooth taut string method to one-dimensional data.

Usage

smdenreg(x, verbose = FALSE, bandwidth=-1, maxkuipnr=19,asympbounds=FALSE, squeezing.factor=0.9, firstlambda=10,smqeps=1/length(x),fsign=double(0), gensign=TRUE,...)

Arguments

x
observed values
verbose
logical, if T progress (for each iteration) is illustrated grahically
bandwidth
if set to a positive value the specified bandwidth is used instead of the automatic criterion based on generalized Kuiper metrics.
maxkuipnr
The order of the highest generalized Kuiper metric used for the automatic choice of the bandwidth
asympbounds
If set to T asymptotic bounds derived from a Brownian Bridge are used for the Kuiper criterion. Otherwise simulated bounds for various sample sizes are interpolated for the size of the data x
squeezing.factor
The amount of decrement applied to the bandwidthes
firstlambda
Initial value of lambda's for global squeezing.
smqeps
Distance between the (equally-spaced) time points.
fsign
Monotonicity constraints, vector of size n-1 of -1,0 and 1's. If fsign[i]==1, then fhat[i+1]>= fhat[i]. If fsign[i]==-1, then fhat[i+1]
gensign
If TRUE the taut string method is used to automatically produce suitable monotonicity constraints.
...
Passed to the plot command if verbose=T.

Value

x
The sorted data
y
values of the density approximation between the observations
nmax
Number of local extreme values
trans
taut string at the observations, should look like uniform noise

References

Kovac, A. (2006) Smooth functions and local extreme values. Technical Report

See Also

pmreg,l1pmreg,pmspec

Examples

Run this code
y <- rclaw(500)
hist(y,col="lightgrey",40,freq=FALSE)
lines(smdenreg(y),col="red")

Run the code above in your browser using DataLab