Learn R Programming

ftsa (version 1.3)

fbootstrap: Bootstrap independent and identically distributed functional data

Description

Computes bootstrap or smoothed bootstrap samples based on independent and identically distributed functional data.

Usage

fbootstrap(data, estad = func.mean, alpha = 0.05, nb = 200, suav = 0,
 media.dist = FALSE, graph = FALSE, ...)

Arguments

Value

A list containing the following components is returned.estimateEstimate function.max.distMax distance of bootstrap samples.rep.distDistances of bootstrap samples.resamplesBootstrap samples.centerFunctional mean.

References

M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2007) "A functional analysis of NOx levels: location and scale estimation and outlier detection", Computational Statistics, 22(3), 411-427. M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2008) "Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels", Environmetrics, 19(4), 331-345. M. Febrero and P. Galeano and W. Gonzalez-Manteiga (2009) "Measures of influence for the functional linear model with scalar response", Journal of Multivariate Analysis, 101(2), 327-339.

Examples

Run this code
fbootstrap(data = ElNino)

Run the code above in your browser using DataLab