dynupdate(data, newdata = NULL, holdoutdata, method = c("ts", "block",
"ols", "pls", "ridge"), fmethod = c("arima", "ar", "ets", "ets.na",
"rwdrift", "rw"), pcdmethod = c("classical", "M", "rapca"),
ngrid = max(1000, ncol(data$y)), order = 6, lambda = 0.01,
value = FALSE, interval = FALSE, level = 80,
pimethod = c("parametric", "nonparametric"), B = 1000)fts containing the dynamic updated point forecasts.fts containing the bootstrapped point forecasts, which are updated by the PLS method.fts containing the lower bound of prediction intervals.fts containing the upper bound of prediction intervals.method = "classical", then standard functional principal component decomposition is used, as described by Ramsay and Dalzell (1991).
If method = "rapca", then the robust principal component algorithm of Hubert, Rousseeuw and Verboven (2002) is used.
If method = "M", then the hybrid algorithm of Hyndman and Ullah (2005) is used.ftsm, forecast.ftsm, plot.fm, residuals.fm, summary.fmdynupdate(data = ElNino, newdata = ElNino$y[1:4,57],
holdoutdata = ElNino$y[5:12,57], method = "block", interval = TRUE)Run the code above in your browser using DataLab