fts
object.
"plot"(x, plot.type = c("function", "components", "variance"), components, xlab1 = fit$y$xname, ylab1 = "Basis function", xlab2 = "Time", ylab2 = "Coefficient", mean.lab = "Mean", level.lab = "Level", main.title = "Main effects", interaction.title = "Interaction", vcol = 1:3, shadecols = 7, fcol = 4, basiscol = 1, coeffcol = 1, outlier.col = 2, outlier.pch = 19, outlier.cex = 0.5,...)
forecast.ftsm
.plot.type = "variance"
.plot.type = "components"
.plot.type = "components"
.plot.type = "components"
.plot.type = "components"
.plot.type = "function"
, it produces a plot of the forecast functions; When plot.type = "components"
, it produces a plot of the principla components and coefficients with forecasts and prediction intervals for each coefficient;
When plot.type = "variance"
, it produces a plot of the variance components.
R. J. Hyndman and H. Booth (2008) "Stochastic population forecasts using functional data models for mortality, fertility and migration", International Journal of Forecasting, 24(3), 323-342.
R. J. Hyndman and H. L. Shang (2009) "Forecasting functional time series (with discussion)", Journal of the Korean Statistical Society, 38(3), 199-221.
ftsm
, plot.fm
, plot.fmres
, residuals.fm
, summary.fm
plot(x = forecast(object = ftsm(y = ElNino)))
Run the code above in your browser using DataLab