Learn R Programming

ftsa (version 4.7)

plot.ftsf: Plot fitted model components for a functional time series model

Description

Plot fitted model components for a fts object.

Usage

"plot"(x, plot.type = c("function", "components", "variance"), components, xlab1 = fit$y$xname, ylab1 = "Basis function", xlab2 = "Time", ylab2 = "Coefficient", mean.lab = "Mean", level.lab = "Level", main.title = "Main effects", interaction.title = "Interaction", vcol = 1:3, shadecols = 7, fcol = 4, basiscol = 1, coeffcol = 1, outlier.col = 2, outlier.pch = 19, outlier.cex = 0.5,...)

Arguments

x
Output from forecast.ftsm.
plot.type
Type of plot.
components
Number of principal components.
xlab1
x-axis label for principal components.
xlab2
x-axis label for coefficient time series.
ylab1
y-axis label for principal components.
ylab2
y-axis label for coefficient time series.
mean.lab
Label for mean component.
level.lab
Label for level component.
main.title
Title for main effects.
interaction.title
Title for interaction terms.
vcol
Colors to use if plot.type = "variance".
shadecols
Color for shading of prediction intervals when plot.type = "components".
fcol
Color of point forecasts when plot.type = "components".
basiscol
Colors for principal components if plot.type = "components".
coeffcol
Colors for time series coefficients if plot.type = "components".
outlier.col
Colors for outlying years.
outlier.pch
Plotting character for outlying years.
outlier.cex
Size of plotting character for outlying years.
...
Plotting parameters.

Value

Details

When plot.type = "function", it produces a plot of the forecast functions;

When plot.type = "components", it produces a plot of the principla components and coefficients with forecasts and prediction intervals for each coefficient;

When plot.type = "variance", it produces a plot of the variance components.

References

R. J. Hyndman and M. S. Ullah (2007) "Robust forecasting of mortality and fertility rates: A functional data approach", Computational Statistics and Data Analysis, 51(10), 4942-4956.

R. J. Hyndman and H. Booth (2008) "Stochastic population forecasts using functional data models for mortality, fertility and migration", International Journal of Forecasting, 24(3), 323-342.

R. J. Hyndman and H. L. Shang (2009) "Forecasting functional time series (with discussion)", Journal of the Korean Statistical Society, 38(3), 199-221.

See Also

ftsm, plot.fm, plot.fmres, residuals.fm, summary.fm

Examples

Run this code
plot(x = forecast(object = ftsm(y = ElNino)))

Run the code above in your browser using DataLab