Learn R Programming

ftsa (version 4.7)

plot.ftsm: Plot fitted model components for a functional time series model

Description

Plot showing the basis functions in the top row of plots and the coefficients in the bottom row of plots.

Usage

"plot"(x, components, xlab1 = x$y$xname, ylab1 = "Basis function", xlab2 = "Time", ylab2 = "Coefficient", mean.lab = "Mean", level.lab = "Level", main.title = "Main effects", interaction.title = "Interaction", basiscol = 1, coeffcol = 1, outlier.col = 2, outlier.pch = 19, outlier.cex = 0.5, ...)

Arguments

x
Output from ftsm.
components
Number of principal components to plot.
xlab1
x-axis label for basis functions.
xlab2
x-axis label for coefficient time series.
ylab1
y-axis label for basis functions.
ylab2
y-axis label for coefficient time series.
mean.lab
Label for mean component.
level.lab
Label for level component.
main.title
Title for main effects.
interaction.title
Title for interaction terms.
basiscol
Colors for basis functions if plot.type="components".
coeffcol
Colors for time series coefficients if plot.type="components".
outlier.col
Colour for outlying years.
outlier.pch
Plotting character for outlying years.
outlier.cex
Size of plotting character for outlying years.
...
Plotting parameters.

Value

None. Function produces a plot.

References

R. J. Hyndman and M. S. Ullah (2007) "Robust forecasting of mortality and fertility rates: A functional data approach", Computational Statistics and Data Analysis, 51(10), 4942-4956.

R. J. Hyndman and H. L. Shang (2009) "Forecasting functional time series" (with discussion), Journal of the Korean Statistical Society, 38(3), 199-221.

See Also

forecast.ftsm, ftsm, plot.fm, plot.ftsf, residuals.fm, summary.fm

Examples

Run this code
# plot different principal components.	
plot.ftsm(ftsm(y = ElNino, order = 2), components = 2)

Run the code above in your browser using DataLab