Learn R Programming

⚠️There's a newer version (2.0) of this package.Take me there.
  _____     .__  .__   __                   __
_/ ____\_ __|  | |  |_/  |_  ____ ___  ____/  |_
\   __\  |  \  | |  |\   __\/ __ \\  \/  /\   __\
 |  | |  |  /  |_|  |_|  | \  ___/ >    <  |  |
 |__| |____/|____/____/__|  \___  >__/\_ \ |__|
                                \/      \/

Get full text articles from (almost) anywhere

rOpenSci has a number of R packages to get either full text, metadata, or both from various publishers. The goal of fulltext is to integrate these packages to create a single interface to many data sources.

fulltext makes it easy to do text-mining by supporting the following steps:

  • Search for articles
  • Fetch articles
  • Get links for full text articles (xml, pdf)
  • Extract text from articles / convert formats
  • Collect bits of articles that you actually need
  • Download supplementary materials from papers

Additional steps we hope to include in future versions:

  • Analysis enabled via the tm package and friends, and via Spark-R to handle especially large jobs
  • Visualization

Data sources in fulltext include:

available via Pubmed)

  • We will add more, as publishers open up, and as we have time...See the master list here

Authorization: A number of publishers require authorization via API key, and some even more draconian authorization processes involving checking IP addresses. We are working on supporting all the various authorization things for different publishers, but of course all the OA content is already easily available.

We'd love your feedback. Let us know what you think in the issue tracker

Article full text formats by publisher: https://github.com/ropensci/fulltext/blob/master/vignettes/formats.Rmd

Installation

Stable version from CRAN

install.packages("fulltext")

Development version from GitHub

devtools::install_github("ropensci/fulltext")

Load library

library('fulltext')

Extraction tools

If you want to use ft_extract() function, it currently has two options for how to extract text from PDFs: xpdf and ghostscript.

for instructions on how to download and install ghostscript. For OSX, you an also get ghostscript via https://github.com/Homebrew/homebrew-core/blob/master/Formula/ghostscript.rb with brew install gs.

Search

ft_search() - get metadata on a search query.

ft_search(query = 'ecology', from = 'plos')
#> Query:
#>   [ecology] 
#> Found:
#>   [PLoS: 33966; BMC: 0; Crossref: 0; Entrez: 0; arxiv: 0; biorxiv: 0; Europe PMC: 0] 
#> Returned:
#>   [PLoS: 10; BMC: 0; Crossref: 0; Entrez: 0; arxiv: 0; biorxiv: 0; Europe PMC: 0]

Get full text links

ft_links() - get links for articles (xml and pdf).

res1 <- ft_search(query = 'ecology', from = 'entrez', limit = 5)
ft_links(res1)
#> <fulltext links>
#> [Found] 3 
#> [IDs] ID_27439703 ID_27439360 ID_27434666 ...

Or pass in DOIs directly

ft_links(res1$entrez$data$doi, from = "entrez")
#> <fulltext links>
#> [Found] 3 
#> [IDs] ID_27439703 ID_27439360 ID_27434666 ...

Get full text

ft_get() - get full or partial text of articles.

ft_get('10.1371/journal.pone.0086169', from = 'plos')
#> <fulltext text>
#> [Docs] 1 
#> [Source] R session  
#> [IDs] 10.1371/journal.pone.0086169 ...

Extract chunks

library("rplos")
(dois <- searchplos(q = "*:*", fl = 'id',
   fq = list('doc_type:full',"article_type:\"research article\""), limit = 5)$data$id)
#> [1] "10.1371/journal.pone.0063114" "10.1371/journal.pone.0039479"
#> [3] "10.1371/journal.pone.0003940" "10.1371/journal.pcbi.0030082"
#> [5] "10.1371/journal.pone.0051856"
x <- ft_get(dois, from = "plos")
x %>% chunks("publisher") %>% tabularize()
#> $plos
#>                                     publisher
#> 1 Public Library of ScienceSan Francisco, USA
#> 2 Public Library of ScienceSan Francisco, USA
#> 3 Public Library of ScienceSan Francisco, USA
#> 4 Public Library of ScienceSan Francisco, USA
#> 5 Public Library of ScienceSan Francisco, USA
x %>% chunks(c("doi","publisher")) %>% tabularize()
#> $plos
#>                            doi                                   publisher
#> 1 10.1371/journal.pone.0063114 Public Library of ScienceSan Francisco, USA
#> 2 10.1371/journal.pone.0039479 Public Library of ScienceSan Francisco, USA
#> 3 10.1371/journal.pone.0003940 Public Library of ScienceSan Francisco, USA
#> 4 10.1371/journal.pcbi.0030082 Public Library of ScienceSan Francisco, USA
#> 5 10.1371/journal.pone.0051856 Public Library of ScienceSan Francisco, USA

Use dplyr to data munge

library("dplyr")
x %>%
 chunks(c("doi", "publisher", "permissions")) %>%
 tabularize() %>%
 .$plos %>%
 select(-permissions.license)
#>                            doi                                   publisher
#> 1 10.1371/journal.pone.0063114 Public Library of ScienceSan Francisco, USA
#> 2 10.1371/journal.pone.0039479 Public Library of ScienceSan Francisco, USA
#> 3 10.1371/journal.pone.0003940 Public Library of ScienceSan Francisco, USA
#> 4 10.1371/journal.pcbi.0030082 Public Library of ScienceSan Francisco, USA
#> 5 10.1371/journal.pone.0051856 Public Library of ScienceSan Francisco, USA
#>   permissions.copyright.year permissions.copyright.holder
#> 1                       2013              Schaafsma et al
#> 2                       2012            Novoseltsev et al
#> 3                       2008                Luchman et al
#> 4                       2007                Puccini et al
#> 5                       2012              Ambrosini et al
#>   permissions.license_url
#> 1                    <NA>
#> 2                    <NA>
#> 3                    <NA>
#> 4                    <NA>
#> 5                    <NA>

Supplementary materials

Grab supplementary materials for (re-)analysis of data

ft_get_si() accepts article identifiers, and output from ft_search(), ft_get()

catching.crabs <- read.csv(ft_get_si("10.6084/m9.figshare.979288", 2))
#> Error in ft_get_si.character("10.6084/m9.figshare.979288", 2): '...' used in an incorrect context
head(catching.crabs)
#> Error in head(catching.crabs): object 'catching.crabs' not found

Cache

When dealing with full text data, you can get a lot quickly, and it can take a long time to get. That's where caching comes in. And after you pull down a bunch of data, if you do so within the R session, you don't want to lose that data if the session crashes, etc. When you search you will be able to (i.e., not ready yet) optionally cache the raw JSON/XML/etc. of each request locally - when you do that exact search again we'll just give you the local data - unless of course you want new data, which you can do.

ft_get('10.1371/journal.pone.0086169', from='plos', cache=TRUE)

Extract text from PDFs

There are going to be cases in which some results you find in ft_search() have full text available in text, xml, or other machine readable formats, but some may be open access, but only in pdf format. We have a series of convenience functions in this package to help extract text from pdfs, both locally and remotely.

Locally, using code adapted from the package tm, and various pdf to text parsing backends

pdf <- system.file("examples", "example2.pdf", package = "fulltext")

Using ghostscript

(res_gs <- ft_extract(pdf, "gs"))
#> <document>/Users/sacmac/github/ropensci/fulltext/inst/examples/example2.pdf
#>   Title: pone.0107412 1..10
#>   Producer: Acrobat Distiller 9.0.0 (Windows); modified using iText 5.0.3 (c) 1T3XT BVBA
#>   Creation date: 2014-09-18

Using xpdf

(res_xpdf <- ft_extract(pdf, "xpdf"))
#> <document>/Users/sacmac/github/ropensci/fulltext/inst/examples/example2.pdf
#>   Pages: 10
#>   Title: pone.0107412 1..10
#>   Producer: Acrobat Distiller 9.0.0 (Windows); modified using iText 5.0.3 (c) 1T3XT BVBA
#>   Creation date: 2014-09-18

Or extract directly into a tm Corpus

paths <- sapply(paste0("example", 2:5, ".pdf"), function(x) system.file("examples", x, package = "fulltext"))
(corpus_xpdf <- ft_extract_corpus(paths, "xpdf"))
#> $meta
#>           names                           class
#> 1 content, meta PlainTextDocument, TextDocument
#> 2 content, meta PlainTextDocument, TextDocument
#> 3 content, meta PlainTextDocument, TextDocument
#> 4 content, meta PlainTextDocument, TextDocument
#> 
#> $data
#> <<VCorpus>>
#> Metadata:  corpus specific: 0, document level (indexed): 0
#> Content:  documents: 4
#> 
#> attr(,"class")
#> [1] "xpdf"

Extract pdf remotely on the web, using a service called PDFX

pdf5 <- system.file("examples", "example5.pdf", package = "fulltext")
pdfx(file = pdf5)
#> $meta
#> $meta$job
#> [1] "34b281c10730b9e777de8a29b2dbdcc19f7d025c71afe9d674f3c5311a1f2044"
#>
#> $meta$base_name
#> [1] "5kpp"
#>
#> $meta$doi
#> [1] "10.7554/eLife.03640"
#>
#>
#> $data
#> <?xml version="1.0" encoding="UTF-8"?>
#> <pdfx xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://pdfx.cs.man.ac.uk/static/article-schema.xsd">
#>   <meta>
#>     <job>34b281c10730b9e777de8a29b2dbdcc19f7d025c71afe9d674f3c5311a1f2044</job>
#>     <base_name>5kpp</base_name>
#>     <doi>10.7554/eLife.03640</doi>
#>   </meta>
#>    <article>
#>  .....

Meta

Copy Link

Version

Install

install.packages('fulltext')

Monthly Downloads

56

Version

0.1.8

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Scott Chamberlain

Last Published

July 23rd, 2016

Functions in fulltext (0.1.8)

cache

Cache blobs of json, xml or pdfs of text from ft_get() function
ft_browse

Browse an article in your default browser
ft_extract

Extract text from a single pdf document
eupmc

Europe PMC utilities
collect

Collect data from a remote source in fulltext
chunks

Extract chunks of data from articles
extract_tools

PDF extraction tools
bmc_search

Search for gene sequences available for a species from NCBI.
ft_extract_corpus

Extract text from one to many pdf documents into a tm Corpus or Vcorpus.
ft_get

Get full text
pdfx

PDF-to-XML conversion of scientific articles using pdfx
ft_serialize

Serialize raw text to other formats, including to disk
ft_search

Search for full text
ft_providers

Search for information on journals or publishers.
ft_links

Get full text links
%>%

Pipe operator
fulltext-package

Fulltext search and retrieval of scholarly texts.
ft_type_sum

Type summary
%>%

Pipe operator
ft_get_si

Download supplementary materials from journals