# generating input and output data
set.seed(100)
n.tr <- 2^5
x1 <- x2 <- x3 <- x4 <- x5 <- seq(0, 1, length = n.tr^(1/5))
sIn <- expand.grid(x1 = x1, x2 = x2, x3 = x3, x4 = x4, x5 = x5)
fIn <- list(f1 = matrix(runif(n.tr * 10), ncol = 10),
f2 = matrix(runif(n.tr * 22), ncol = 22))
sOut <- fgp_BB7(sIn, fIn, n.tr)
if (FALSE) {
# optimizing the model structure with 'fgpm_factory' (~10 seconds)
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut)
# assessing the quality of the model - absolute and w.r.t. the other
# explored models
plot(xm, which = "evol")
# diagnostics (two subplots)
plot(xm, which = "diag")
plot(xm, which = "diag", horiz = TRUE)
# diagnostics (one plot)
plot(xm, which = "diag", fitp = FALSE)
plot(xm, which = "diag", calib = FALSE)
# customizing some graphical parameters
plot(xm, calib.gpars = list(xlim = c(800,1000), ylim = c(600,1200)),
fitp.gpars = list(main = "Relative quality", legends = FALSE))
}
Run the code above in your browser using DataLab