# NOT RUN {
# Clustering the well-known "Canadian temperature" data (Ramsay & Silverman)
basis <- create.bspline.basis(c(0, 365), nbasis=21, norder=4)
fdobj <- smooth.basis(day.5, CanadianWeather$dailyAv[,,"Temperature.C"],basis,
fdnames=list("Day", "Station", "Deg C"))$fd
res = funHDDC(fdobj,4,model='AkBQkDk',init='hclust',thd=0.001)
# Visualization of the partition and the group means
par(mfrow=c(1,2))
plot(fdobj,col=res$cls,lwd=2,lty=1)
fdmeans = fdobj; fdmeans$coefs = t(res$prms$m)
plot(fdmeans,col=1:max(res$cls),lwd=2)
## DO NOT RUN
# # Map of the results
# par(mfrow=c(1,12))
# library(maps)
# map("world", "canada")
# text(-CanadianWeather$coordinates[,2],CanadianWeather$coordinates[,1],
# labels=rownames(CanadianWeather$coordinates),col=res$cls,cex=0.75)
# }
Run the code above in your browser using DataLab