# NOT RUN {
library(fda)
##Univariate example
data("trigo")
basis<- create.bspline.basis(c(0,1), nbasis=25)
var1<-smooth.basis(argvals=seq(0,1,length.out = 100),y=t(trigo[,1:100]),fdParobj=basis)$fd
res.uni<-funHDDC(var1,K=2:4)
slopeHeuristic(res.uni)
##Multivariate example
data("triangle")
basis <- create.bspline.basis(c(1,21), nbasis=25)
var1<-smooth.basis(argvals=seq(from=1,to=21,length.out = 101),y=t(triangle[,1:101]),
fdParobj=basis)$fd
var2<-smooth.basis(argvals=seq(from=1,to=21,length.out = 101),y=t(triangle[,102:202]),
fdParobj=basis)$fd
res.multi<-funHDDC(list(var1,var2),K=2:6)
slopeHeuristic(res.multi)
# }
# NOT RUN {
#An other example on Canada dataset
library(fda)
#Clustering the "Canadian temperature" data (Ramsey & Silverman): univariate case
daybasis65 <- create.fourier.basis(c(0, 365), nbasis=65, period=365)
daytempfd <- smooth.basis(day.5, CanadianWeather$dailyAv[,,"Temperature.C"], daybasis65,
fdnames=list("Day", "Station", "Deg C"))$fd
res.uni<-funHDDC(daytempfd,K=2:6,model="AkjBkQkDk",init="random",threshold=0.2)
slopeHeuristic(res.uni)
#Clustering the "Canadian temperature" data (Ramsey & Silverman): multivariate case
daybasis65 <- create.fourier.basis(c(0, 365), nbasis=65, period=365)
daytempfd <- smooth.basis(day.5, CanadianWeather$dailyAv[,,"Temperature.C"], daybasis65,
fdnames=list("Day", "Station", "Deg C"))$fd
dayprecfd<-smooth.basis(day.5, CanadianWeather$dailyAv[,,"Precipitation.mm"], daybasis65,
fdnames=list("Day", "Station", "Mm"))$fd
res.multi<-funHDDC(list(daytempfd,dayprecfd),K=2:4,model="AkjBkQkDk",
init="random",threshold=0.2)
slopeHeuristic(res.multi)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab