Free Access Week - Data Engineering + BI
Data Engineering and BI courses are free this week!
Free Access Week - Jun 2-8

funcharts (version 1.7.0)

pca_mfd: Multivariate functional principal components analysis

Description

Multivariate functional principal components analysis (MFPCA) performed on an object of class mfd. It is a wrapper to fda::pca.fd, providing some additional arguments.

Usage

pca_mfd(mfdobj, scale = TRUE, nharm = 20)

Value

Modified pca.fd object, with multivariate functional principal component scores summed over variables (fda::pca.fd returns an array of scores when providing a multivariate functional data object). Moreover, the multivariate functional principal components given in harmonics

are converted to the mfd class.

Arguments

mfdobj

A multivariate functional data object of class mfd.

scale

If TRUE, it scales data before doing MFPCA using scale_mfd. Default is TRUE.

nharm

Number of multivariate functional principal components to be calculated. Default is 20.

See Also

scale_mfd

Examples

Run this code
library(funcharts)
mfdobj <- data_sim_mfd()
pca_obj <- pca_mfd(mfdobj)
plot_pca_mfd(pca_obj)

Run the code above in your browser using DataLab