# \donttest{
# Generate in-control data with three equally-sized clusters, maximum dissimilarity
data <- simulate_data_fmrcc(n_obs = 300, delta_1 = 1, delta_2 = 0.5, severity = 0)
# In-control single cluster case (delta_1 = 0)
data_single <- simulate_data_fmrcc(n_obs = 300, delta_1 = 0, delta_2 = 0.5, severity = 0)
# In-control clusters differing only in regression coefficients
data_beta_only <- simulate_data_fmrcc(n_obs = 300, delta_1 = 1, delta_2 = 1, severity = 0)
# Add measurement noise and use t-distributed errors
data_t_noise <- simulate_data_fmrcc(n_obs = 300, delta_1 = 1, delta_2 = 0.5, severity = 0,
measurement_noise_sigma = 0.01,
fun_noise = 't', df = 5)
# Generate out-of-control data with linear shift
data_oc <- simulate_data_fmrcc(n_obs = 300,
shift_coef = c(0, 0, 1, 0),
severity = 2,
delta_1 = 1,
delta_2 = 0.5)
# Generate OC data with quadratic shift
data_quad <- simulate_data_fmrcc(n_obs = 300,
shift_coef = c(0, 1, 0, 0),
severity = 3,
delta_1 = 1,
delta_2 = 0.5)
# Generate OC data with RSW-specific "low" shift pattern
data_rsw_low <- simulate_data_fmrcc(n_obs = 300,
shift_coef = 'low',
severity = 1.5,
delta_1 = 1,
delta_2 = 0.5)
# Generate OC data with RSW-specific "high" shift pattern
data_rsw_high <- simulate_data_fmrcc(n_obs = 300,
shift_coef = 'high',
severity = 2,
delta_1 = 0.66,
delta_2 = 0.5)
# }
Run the code above in your browser using DataLab