if (FALSE) {
library(funcharts)
set.seed(0)
dat <- simulate_data_RoMFCC(p_cellwise = 0.05,
p_casewise = 0.05,
outlier = "outlier_E",
M_outlier_cell = 0.03,
M_outlier_case = 0.01,
max_n_cellwise = 10)
mfdobj <- get_mfd_list(dat$X_mat_list, n_basis = 5)
mfdobj_training <- mfdobj[1:333, ]
mfdobj_tuning <- mfdobj[334:1000, ]
ff_training <- functional_filter(mfdobj = mfdobj_training)
ff_tuning <- functional_filter(mfdobj = mfdobj_tuning)
x_imp_training <- RoMFDI(mfdobj = ff_training$mfdobj)
x_imp_tuning <- RoMFDI(mfdobj = ff_tuning$mfdobj)
X_imp_training <- x_imp_training[[1]]
X_imp_tuning <- x_imp_tuning[[1]]
out_phase1_casewise <- RoMFCC_PhaseI_casewise(
mfdobj_imp = X_imp_training,
mfdobj_imp_tuning = X_imp_tuning
)
mfd_all_imputed <- rbind_mfd(X_imp_training, X_imp_tuning)
out_phase2_casewise <- RoMFCC_PhaseII_casewise(
mfdobj_all_imp = mfdobj_all_imputed,
mod_phaseI_casewise = out_phase1_casewise
)
plot_control_charts(out_phase2_casewise)
}
Run the code above in your browser using DataLab