
Ledermann's (1937) inequality to determine either (a) how many factor indicators are needed to uniquely estimate a user-specified number of factors or (b) how many factors can be uniquely estimated from a user-specified number of factor indicators. See the Details section for more information
Ledermann(numFactors = NULL, numVariables = NULL)
numFactors (Numeric) Given the inputs, the number of factors
to be estimated from the numVariables
number of factor indicators.
numVariables (Numeric) Given the inputs, the number of
variables needed to estimate numFactorso
.
(Numeric) Determine the number of variables needed
to uniquely estimate the [user-specifed] number of factors. Defaults
to numFactors = NULL
.
(Numeric) Determine the number of factors that can be
uniquely estimated from the [user-specifed] number of variables Defaults
to numVariables = NULL
.
Casey Giordano
The user will specified either (a) numFactors
or (b)
numVariables
. When one value is specified, the obtained estimate
for the other may be a non-whole number. If estimating the number of
required variables, the obtained estimate is rounded up
(using ceiling
). If estimating the number of factors,
the obtained estimate is rounded down (using floor
). For example,
if numFactors = 2
, roughly 4.56 variables are required for an identified
solution. However, the function returns an estimate of 5.
For the relevant equations, see Thurstone (1947, p. 293) Equations 10 and 11.
Ledermann, W. (1937). On the rank of the reduced correlational matrix in multiple-factor analysis. Psychometrika, 2(2), 85-93.
Thurstone, L. L. (1947). Multiple-factor analysis; a development and expansion of The Vectors of Mind.
Other Factor Analysis Routines:
BiFAD()
,
Box26
,
GenerateBoxData()
,
SLi()
,
SchmidLeiman()
,
faAlign()
,
faEKC()
,
faIB()
,
faLocalMin()
,
faMB()
,
faMain()
,
faScores()
,
faSort()
,
faStandardize()
,
faX()
,
fals()
,
fapa()
,
fareg()
,
fsIndeterminacy()
,
orderFactors()
,
print.faMB()
,
print.faMain()
,
promaxQ()
,
summary.faMB()
,
summary.faMain()
## To estimate 3 factors, how many variables are needed?
Ledermann(numFactors = 3,
numVariables = NULL)
## Provided 10 variables are collected, how many factors
## can be estimated?
Ledermann(numFactors = NULL,
numVariables = 10)
Run the code above in your browser using DataLab