Learn R Programming

futurize: Parallelize Common Functions via One Magic Function

TL;DR

The futurize package makes it extremely simple to parallelize your existing map-reduce calls, but also a growing set of domain-specific calls. All you need to know is that there is a single function called futurize() that will take care of everything, e.g.

y <- lapply(x, fcn) |> futurize()
y <- map(x, fcn) |> futurize()
b <- boot(city, ratio, R = 999) |> futurize()

The futurize() function parallelizes via futureverse, meaning your code can take advantage of any supported future backends, whether it be parallelization on your local computer, across multiple computers, in the cloud, or on a high-performance compute (HPC) cluster. The futurize package has only one hard dependency - the future package. All other dependencies are optional "buy-in" dependencies as shown in the below tables.

Supported calls

Supported map-reduce packages

The futurize package supports transpilation of functions from multiple packages. The tables below summarize the supported map-reduce and domain-specific functions, respectively. To programmatically see which packages are currently supported, use:

futurize_supported_packages()

To see which functions are supported for a specific package, use:

futurize_supported_functions("caret")
PackageFunctionsRequires
baselapply(), sapply(), tapply(), vapply(), mapply(), .mapply(), Map(), eapply(), apply(), by(), replicate(), Filter()future.apply
statskernapply()future.apply
purrrmap() and variants, map2() and variants, pmap() and variants, imap() and variants, modify(), modify_if(), modify_at(), map_if(), map_at(), invoke_map()furrr
crossmapxmap() and variants, xwalk(), map_vec(), map2_vec(), pmap_vec(), imap_vec()(itself)
foreach%do%, e.g. foreach() %do% { }, times() %do% { }doFuture
plyraaply() and variants, ddply() and variants, llply() and variants, mlply() and variantsdoFuture
BiocParallelbplapply(), bpmapply(), bpvec(), bpiterate(), bpaggregate()doFuture

Table: Map-reduce functions currently supported by futurize() for parallel transpilation.

Here are some examples:

library(futurize)
plan(multisession)

xs <- 1:10
ys <- lapply(xs, sqrt) |> futurize()

xs <- 1:10
ys <- purrr::map(xs, sqrt) |> futurize()

xs <- 1:10
ys <- crossmap::xmap_dbl(xs, ~ .y * .x) |> futurize()

library(foreach)
xs <- 1:10
ys <- foreach(x = xs) %do% { sqrt(x) } |> futurize()

xs <- 1:10
ys <- plyr::llply(xs, sqrt) |> futurize()

xs <- 1:10
ys <- BiocParallel::bplapply(xs, sqrt) |> futurize()

and

ys <- replicate(3, rnorm(1)) |> futurize()

y <- by(warpbreaks, warpbreaks[,"tension"],
        function(x) lm(breaks ~ wool, data = x)) |> futurize()

xs <- EuStockMarkets[, 1:2]
k <- kernel("daniell", 50)
xs_smooth <- stats::kernapply(xs, k = k) |> futurize()

Supported domain-specific packages

You can also futurize calls from a growing set of domain-specific packages (e.g. boot, caret, glmnet, lme4, mgcv, and tm) that have optional built-in support for parallelization.

PackageFunctionsRequires
bootboot(), censboot(), tsboot()future
caretbag(), gafs(), nearZeroVar(), rfe(), safs(), sbf(), train()doFuture
glmnetcv.glmnet()doFuture
lme4allFit(), bootMer()future
mgcvbam(), predict.bam()future
tmTermDocumentMatrix(), tm_index(), tm_map()future

Table: Domain-specific functions currently supported by futurize() for parallel transpilation.

Here are some examples:

ctrl <- caret::trainControl(method = "cv", number = 10)
model <- caret::train(Species ~ ., data = iris, method = "rf", trControl = ctrl) |> futurize()

ratio <- function(d, w) sum(d$x * w)/sum(d$u * w)
b <- boot::boot(boot::city, ratio, R = 999) |> futurize()

cv <- glmnet::cv.glmnet(x, y) |> futurize()

m <- lme4::allFit(models) |> futurize()

b <- mgcv::bam(y ~ s(x0, bs = bs) + s(x1, bs = bs), data = dat) |> futurize()

m <- tm::tm_map(crude, content_transformer(tolower)) |> futurize()

Copy Link

Version

Install

install.packages('futurize')

Version

0.1.0

License

GPL (>= 3)

Maintainer

Henrik Bengtsson

Last Published

January 22nd, 2026

Functions in futurize (0.1.0)

futurize

Turn common R function calls into concurrent calls for parallel evaluation
futurize_options

Options for how futures are partitioned and resolved
futurize_supported_packages

List packages and functions supporting futurization
transpile

Transpile an R expression
zzz-futurize.options

Options used by futurize