powered by
Get pretrained text embeddings from the OpenAI or Mistral API. Automatically batches requests to handle rate limits.
get_embeddings( text, model = "text-embedding-3-large", dimensions = 256, openai_api_key = Sys.getenv("OPENAI_API_KEY"), parallel = TRUE )
A matrix of embedding vectors (one per row).
A character vector
Which embedding model to use. Defaults to 'text-embedding-3-large'.
The dimension of the embedding vectors to return. Defaults to 256. Note that the 'mistral-embed' model will always return 1024 vectors.
Your OpenAI API key. By default, looks for a system environment variable called "OPENAI_API_KEY".
TRUE to submit API requests in parallel. Setting to FALSE can reduce rate limit errors at the expense of longer runtime.
if (FALSE) { embeddings <- get_embeddings(c('dog', 'cat', 'canine', 'feline')) embeddings['dog',] |> dot(embeddings['canine',]) embeddings['dog',] |> dot(embeddings['feline',]) }
Run the code above in your browser using DataLab