Learn R Programming

fwildclusterboot

The {fwildclusterboot} package implements multiple fast wild cluster bootstrap algorithms as developed in Roodman et al (2019) and MacKinnon, Nielsen & Webb (2022).

Via the JuliaConnectoR, {fwildclusterboot} further ports functionality of WildBootTests.jl - which provides an even faster implementation of the wild cluster bootstrap for OLS and supports the WRE bootstrap for IV and tests of multiple joint hypotheses.

The package’s central function is boottest(). It allows to test univariate hypotheses using a wild cluster bootstrap at extreme speed: via the ‘fast’ algorithm, it is possible to run a wild cluster bootstrap with $B = 100.000$ iterations in less than a second!

{fwildclusterboot} supports the following features:

  • The wild bootstrap for OLS (Wu 1986).
  • The wild cluster bootstrap for OLS (Cameron, Gelbach & Miller 2008, Roodman et al, 2019).
  • Multiple new versions of the wild cluster bootstrap as described in MacKinnon, Nielsen & Webb (2022), including the WCR13 (WCR-V), WCR31 (WCR-S), WCR33 (WCR-B), WCU13 (WCU-V), WCU31 (WCU-S) and WCU33 (WCU-B).
  • The subcluster bootstrap (MacKinnon and Webb 2018).
  • Confidence intervals formed by inverting the test and iteratively searching for bounds.
  • Multiway clustering.
  • One-way fixed effects.

Additional features are provided through WildBootTests.jl:

  • Highly optimized versions of the ‘11’ and ‘31’ wild cluster bootstrap variants
  • A highly optimized version of the Wild Restricted Efficient bootstrap (WRE) for IV/2SLS/LIML (Davidson & MacKinnon, 2010).
  • Arbitrary and multiple linear hypotheses in the parameters.

{fwildclusterboot} supports the following models:

  • OLS: lm (from stats), fixest (from fixest), felm from (lfe)
  • IV: ivreg (from ivreg).

Installation

You can install compiled versions of{fwildclusterboot} from CRAN (compiled), R-universe (compiled) or github by following one of the steps below:

# from CRAN 
install.packages("fwildclusterboot")

# from r-universe (windows & mac, compiled R > 4.0 required)
install.packages('fwildclusterboot', repos ='https://s3alfisc.r-universe.dev')
# dev version from github
# note: installation requires Rtools
library(devtools)
install_github("s3alfisc/fwildclusterboot")

The boottest() function

For a longer introduction to {fwildclusterboot}, take a look at the vignette.

library(fwildclusterboot)

# set seed via dqset.seed for engine = "R" & Rademacher, Webb & Normal weights
dqrng::dqset.seed(2352342)
# set 'familiar' seed for all other algorithms and weight types 
set.seed(23325)

data(voters)

# fit the model via fixest::feols(), lfe::felm() or stats::lm()
lm_fit <- lm(proposition_vote ~ treatment  + log_income + as.factor(Q1_immigration) + as.factor(Q2_defense), data = voters)
# bootstrap inference via boottest()
lm_boot <- boottest(lm_fit, clustid = c("group_id1"), B = 9999, param = "treatment")
#> Too guarantee reproducibility, don't forget to set a global random seed
#> **both** via `set.seed()` and `dqrng::dqset.seed()`.
#> This message is displayed once every 8 hours.
summary(lm_boot)
#> boottest.lm(object = lm_fit, param = "treatment", B = 9999, clustid = c("group_id1"))
#>  
#>  Hypothesis: 1*treatment = 0
#>  Observations: 300
#>   Bootstr. Type: rademacher
#>  Clustering: 1-way
#>  Confidence Sets: 95%
#>  Number of Clusters: 40
#> 
#>              term estimate statistic p.value conf.low conf.high
#> 1 1*treatment = 0    0.079     3.983   0.001    0.039     0.119

Citation

If you are in R, you can simply run the following command to get the BibTeX citation for {fwildclusterboot}:

citation("fwildclusterboot")
#> 
#> To cite 'fwildclusterboot' in publications use:
#> 
#>   Fischer & Roodman. (2021). fwildclusterboot: Fast Wild Cluster
#>   Bootstrap Inference for Linear Regression Models. Available from
#>   https://cran.r-project.org/package=fwildclusterboot.
#> 
#> A BibTeX entry for LaTeX users is
#> 
#>   @Misc{,
#>     title = {fwildclusterboot: Fast Wild Cluster Bootstrap Inference for Linear Regression Models (Version 0.12.4.3)},
#>     author = {Alexander Fischer and David Roodman},
#>     year = {2021},
#>     url = {https://cran.r-project.org/package=fwildclusterboot},
#>   }

Alternatively, if you prefer to cite the “Fast & Wild” paper by Roodman et al, it would be great if you mentioned {fwildclusterboot} in a footnote =) !

Copy Link

Version

Install

install.packages('fwildclusterboot')

Monthly Downloads

109

Version

0.13.0

License

GPL-3

Maintainer

Alexander Fischer

Last Published

February 26th, 2023

Functions in fwildclusterboot (0.13.0)

boottest.lm

Fast wild cluster bootstrap inference for object of class lm
confint.boottest

S3 method to obtain wild cluster bootstrapped confidence intervals
boottest.fixest

Fast wild cluster bootstrap inference for object of class fixest
boottest.ivreg

Fast wild cluster bootstrap inference for object of class lm
boot_ssc

set the small sample correction factor applied in boottest()
boot_aggregate

Simple tool that aggregates the value of CATT coefficients in staggered difference-in-difference setups with inference based on a wild cluster bootstrap (see details) - similar to fixest::aggregate()
glance.boottest

S3 method to glance at objects of class boottest
find_proglang

Check if julia or python are installed / can be found on the PATH.
print.boottest

S3 method to print key information for objects of type bboottest
nobs.boottest

S3 method to obtain the effective number of observation used in boottest()
mboottest.lm

Fast wild cluster bootstrap inference of joint hypotheses for object of class lm
tidy.boottest

S3 method to summarize objects of class boottest into tidy data.frame
tidy.mboottest

S3 method to summarize objects of class mboottest into tidy data.frame
pval.mboottest

S3 method to obtain the wild cluster bootstrapped p-value of an object of type mboottest
print.mboottest

S3 method to print key information for objects of type mboottest
reexports

Objects exported from other packages
boottest.felm

Fast wild cluster bootstrap inference for object of class felm
mboottest.felm

Fast wild cluster bootstrap inference for joint hypotheses for object of class felm
boottest

Fast wild cluster bootstrap inference
glance.mboottest

S3 method to glance at objects of class boottest
mboottest

Arbitrary Linear Hypothesis Testing for Regression Models via Wald-Tests
setBoottest_engine

Sets the default bootstrap algo for the current R session to be run via boottest() and mboottest()
summary.boottest

S3 method to summarize objects of class boottest
pval.boottest

S3 method to obtain the wild cluster bootstrapped p-value of an object of type boottest
teststat.mboottest

S3 method to obtain the non-bootstrapped test statistic calculated via mboottest()
pval

pval is a S3 method to collect pvalues for objects of type boottest and mboottest
mboottest.fixest

Fast wild cluster bootstrap inference for joint hypotheses for object of class fixest
teststat.boottest

S3 method to obtain the non-bootstrapped t-statistic calculated via boottest()
nobs.mboottest

S3 method to obtain the effective number of observation used in mboottest()
plot.boottest

Plot the bootstrap distribution of t-statistics
teststat

teststat is a S3 method to collect teststats for objects of type boottest and mboottest
summary.mboottest

S3 method to summarize objects of class mboottest
voters

Random example data set