# NOT RUN {
N <- 100
genDAT <- rbinom(N, 2, 0.3)
sex <- rbinom(N, 1, 0.5)+1
y <- rnorm(N)
COVAR <- matrix(rnorm(N*10), ncol=10)
locReg(GENO=genDAT, SEX=sex, Y=y, COVAR=COVAR)
# correlated example:
library("MASS")
yy <- mvrnorm(1, mu= rep(0, N), Sigma = matrix(0.3, N, N) + diag(0.7, N))
locReg(GENO=list("SNP1"= genDAT, "SNP2" = genDAT[sample(1:100)]),
SEX=sex, Y=as.numeric(yy), COVAR=COVAR, related = TRUE,
clust = rep(1, 100))
# sibpair example:
pairedY <- mvrnorm(N/2,rep(0,2),matrix(c(1,0.2,0.2,1), 2))
yy <- c(pairedY[,1], pairedY[,2])
locReg(GENO=list("SNP1"= genDAT, "SNP2" = genDAT[sample(1:100)]),
SEX=sex, Y=as.numeric(yy), COVAR=COVAR, related = TRUE,
clust = rep(c(1:50), 2))
# Xchr data example:
genDAT1 <- rep(NA, N)
genDAT1[sex==1] <- rbinom(sum(sex==1), 1, 0.5)
genDAT1[sex==2] <-rbinom(sum(sex==2), 2, 0.5)
locReg(GENO=genDAT1, SEX=sex, Y=y, COVAR=COVAR, Xchr=TRUE)
# }
Run the code above in your browser using DataLab