body
and see how the graph is built.BonferroniHolm(n)
parallelGatekeeping()
improvedParallelGatekeeping()
BretzEtAl2011()
HungEtWang2010()
HuqueAloshEtBhore2011()
HommelEtAl2007()
HommelEtAl2007Simple()
MaurerEtAl1995()
improvedFallbackI(weights=rep(1/3, 3))
improvedFallbackII(weights=rep(1/3, 3))
cycleGraph(nodes, weights)
fixedSequence(n)
fallback(weights)
generalSuccessive(weights = c(1/2, 1/2))
simpleSuccessiveI()
simpleSuccessiveII()
truncatedHolm()
BauerEtAl2001()
BretzEtAl2009a()
BretzEtAl2009b()
BretzEtAl2009c()
Ferber2011()
FerberTimeDose2011(times, doses, w="\\nu")
Entangled1Maurer2012()
Entangled2Maurer2012()
graphMCP
that represents a sequentially rejective multiple test procedure.Dmitrienko, A., Offen, W., Westfall, P.H. (2003). Gatekeeping strategies for clinical trials that do not require all primary effects to be significant. Statistics in Medicine. 22, 2387-2400.
Bretz, F., Maurer, W., Brannath, W., Posch, M.: A graphical approach to sequentially rejective multiple test procedures.
Statistics in Medicine 2009 vol. 28 issue 4 page 586-604.
Bretz, F., Maurer, W. and Hommel, G. (2011), Test and power considerations for multiple endpoint analyses using sequentially rejective graphical procedures. Statistics in Medicine, 30: 1489--1501.
Hommel, G., Bretz, F. und Maurer, W. (2007). Powerful short-cuts for multiple testing procedures with special reference to gatekeeping strategies. Statistics in Medicine, 26(22), 4063-4073.
Hommel, G., Bretz, F. (2008): Aesthetics and power considerations in multiple testing - a contradiction? Biometrical Journal 50:657-666.
Hung H.M.J., Wang S.-J. (2010). Challenges to multiple testing in clinical trials. Biometrical Journal 52, 747-756.
W. Maurer, L. Hothorn, W. Lehmacher: Multiple comparisons in drug clinical trials and preclinical assays: a-priori ordered hypotheses. In Biometrie in der chemisch-pharmazeutischen Industrie, Vollmar J (ed.). Fischer Verlag: Stuttgart, 1995; 3-18.
Maurer, W., & Bretz, F. (2012). Memory and other properties of multiple test procedures generated by entangled graphs. Statistics in medicine.
Wiens, B.L., Dmitrienko, A. (2005): The fallback procedure for evaluating a single family of hypotheses. Journal of Biopharmaceutical Statistics 15:929-942.
Ferber, G. Staner, L. and Boeijinga, P. (2011): Structured multiplicity and confirmatory statistical analyses in pharmacodynamic studies using the quantitative electroencephalogram, Journal of neuroscience methods, Volume 201, Issue 1, Pages 204-212.
g <- BonferroniHolm(5)
# If Rgraphviz is installed, we can take a look at the graph:
library(Rgraphviz)
renderGraph(layoutGraph(g))
gMCP(g, pvalues=c(0.1, 0.2, 0.4, 0.4, 0.7))
Run the code above in your browser using DataLab