## Asia (chest clinic) network created from conditional probability tables
yn <- c("yes", "no")
a <- cptable(~asia, values=c(1,99), levels=yn)
t.a <- cptable(~tub+asia, values=c(5,95,1,99), levels=yn)
s <- cptable(~smoke, values=c(5,5), levels=yn)
l.s <- cptable(~lung+smoke, values=c(1,9,1,99), levels=yn)
b.s <- cptable(~bronc+smoke, values=c(6,4,3,7), levels=yn)
e.lt <- cptable(~either+lung+tub, values=c(1,0,1,0,1,0,0,1), levels=yn)
x.e <- cptable(~xray+either, values=c(98,2,5,95), levels=yn)
d.be <- cptable(~dysp+bronc+either, values=c(9,1,7,3,8,2,1,9), levels=yn)
chest.cpt <- compileCPT(a, t.a, s, l.s, b.s, e.lt, x.e, d.be)
chest.bn <- grain(chest.cpt)
## Create network from data and graph specification.
## There are different ways; see documentation in the "See all"
## links.
data(lizard, package="gRbase")
# DAG: height <- species -> diam
daG <- dag(~species + height:species + diam:species)
# UG : [height:species][diam:species]
uG <- ug(~height:species + diam:species)
bn.uG <- grain(uG, data=lizard)
bn.daG <- grain(daG, data=lizard)
Run the code above in your browser using DataLab