dST3, pST3, qST3 and rST3 define the density, distribution function,
quantile function and random generation for the skew t distribution type 3.ST3(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link="log")
dST3(y, mu = 0, sigma = 1, nu = 0, tau=1, log = FALSE)
pST3(q, mu = 0, sigma = 1, nu = 0, tau=1, lower.tail = TRUE, log.p = FALSE)
qST3(p, mu = 0, sigma = 1, nu = 0, tau=1, lower.tail = TRUE, log.p = FALSE)
rST3(n, mu = 0, sigma = 1, nu = 0, tau=1)mu.link, with "identity" link as the default for the mu parameter.
Other links are "$1/mu^2$" and "log"sigma.link, with "log" link as the default for the sigma parameter.
Other links are "inverse" and "identity"nu.link, with "identity" link as the default for the nu parameter.
Other links are "$1/mu^2$" and "log"nu.link, with "log" link as the default for the nu parameter.
Other links are "inverse", "identity"mu parameter valuesnu parameter valuestau parameter valueslength(n) > 1, the length is
taken to be the number requiredST3() returns a gamlss.family object which can be used to fit the skew t type 3 distribution in the gamlss() function.
dST3() gives the density, pST3() gives the distribution function,
qST3() gives the quantile function, and rST3()
generates random deviates.ST3), is defined as
$$f(y|\mu,\sigma,\nu, \tau)=\frac{1}{c} \left[ 1+ \frac{z}{(a+b +z^2)^{1/2}} \right]^{a+1/2} \left[ 1- \frac{z}{(a+b+z^2)^{1/2}}\right]^{b+1/2}$$
where $c=z^{a +b-1} (a+b)^{1/2} B(a,b)$, and
$B(a,b)=\Gamma(a)\Gamma(b)/ \Gamma(a+b)$ and
$z=(y-\mu)/\sigma$ and
$\nu=(a-b)/\left[ab(a+b) \right]^{1/2}$
and
$\tau=2/(a+b)$
for $-\inftygamlss, gamlss.family, BCCG, GA, IG LNOy<- rST3(100, mu=10, nu=1, sigma=3)
hist(y)
m1<-gamlss(y~1, family=ST3)
plot(m1)
curve(dST3(y=x, mu=300 ,sigma=35,nu=100), 100, 600,
main = "The ex-GAUS density mu=300 ,sigma=35,nu=100")
plot(function(x) pST3(x, mu=300,sigma=35,nu=100), 100, 600,
main = "The ex-GAUS cdf mu=300, sigma=35, nu=100")Run the code above in your browser using DataLab