dST3
, pST3
, qST3
and rST3
define the density, distribution function,
quantile function and random generation for the skew t distribution type 3.ST3(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link="log")
dST3(y, mu = 0, sigma = 1, nu = 0, tau=1, log = FALSE)
pST3(q, mu = 0, sigma = 1, nu = 0, tau=1, lower.tail = TRUE, log.p = FALSE)
qST3(p, mu = 0, sigma = 1, nu = 0, tau=1, lower.tail = TRUE, log.p = FALSE)
rST3(n, mu = 0, sigma = 1, nu = 0, tau=1)
mu.link
, with "identity" link as the default for the mu
parameter.
Other links are "$1/mu^2$" and "log"sigma.link
, with "log" link as the default for the sigma
parameter.
Other links are "inverse" and "identity"nu.link
, with "identity" link as the default for the nu
parameter.
Other links are "$1/mu^2$" and "log"nu.link
, with "log" link as the default for the nu
parameter.
Other links are "inverse", "identity"mu
parameter valuesnu
parameter valuestau
parameter valueslength(n) > 1
, the length is
taken to be the number requiredST3()
returns a gamlss.family
object which can be used to fit the skew t type 3 distribution in the gamlss()
function.
dST3()
gives the density, pST3()
gives the distribution function,
qST3()
gives the quantile function, and rST3()
generates random deviates.ST3
), is defined as
$$f(y|\mu,\sigma,\nu, \tau)=\frac{1}{c} \left[ 1+ \frac{z}{(a+b +z^2)^{1/2}} \right]^{a+1/2} \left[ 1- \frac{z}{(a+b+z^2)^{1/2}}\right]^{b+1/2}$$
where $c=z^{a +b-1} (a+b)^{1/2} B(a,b)$, and
$B(a,b)=\Gamma(a)\Gamma(b)/ \Gamma(a+b)$ and
$z=(y-\mu)/\sigma$ and
$\nu=(a-b)/\left[ab(a+b) \right]^{1/2}$
and
$\tau=2/(a+b)$
for $-\inftygamlss
, gamlss.family
, BCCG
, GA
, IG
LNO
y<- rST3(100, mu=10, nu=1, sigma=3)
hist(y)
m1<-gamlss(y~1, family=ST3)
plot(m1)
curve(dST3(y=x, mu=300 ,sigma=35,nu=100), 100, 600,
main = "The ex-GAUS density mu=300 ,sigma=35,nu=100")
plot(function(x) pST3(x, mu=300,sigma=35,nu=100), 100, 600,
main = "The ex-GAUS cdf mu=300, sigma=35, nu=100")
Run the code above in your browser using DataLab