Learn R Programming

gamlss.dist (version 1.5-0)

ST3: The skew t distribution, type 3

Description

The Skew t type 3 distribution Jones and Faddy (2003). The functions dST3, pST3, qST3 and rST3 define the density, distribution function, quantile function and random generation for the skew t distribution type 3.

Usage

ST3(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link="log")
dST3(y, mu = 0, sigma = 1, nu = 0, tau=1, log = FALSE)
pST3(q, mu = 0, sigma = 1, nu = 0, tau=1, lower.tail = TRUE, log.p = FALSE)
qST3(p, mu = 0, sigma = 1, nu = 0, tau=1, lower.tail = TRUE, log.p = FALSE)
rST3(n, mu = 0, sigma = 1, nu = 0, tau=1)

Arguments

mu.link
Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are "$1/mu^2$" and "log"
sigma.link
Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse" and "identity"
nu.link
Defines the nu.link, with "identity" link as the default for the nu parameter. Other links are "$1/mu^2$" and "log"
tau.link
Defines the nu.link, with "log" link as the default for the nu parameter. Other links are "inverse", "identity"
y,q
vector of quantiles
mu
vector of mu parameter values
sigma
vector of scale parameter values
nu
vector of nu parameter values
tau
vector of tau parameter values
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are P[X <= x],="" otherwise,="" p[x=""> x]
p
vector of probabilities.
n
number of observations. If length(n) > 1, the length is taken to be the number required
...
for extra arguments

Value

  • ST3() returns a gamlss.family object which can be used to fit the skew t type 3 distribution in the gamlss() function. dST3() gives the density, pST3() gives the distribution function, qST3() gives the quantile function, and rST3() generates random deviates.

Details

The probability density function of the skew t distribution type 3, (ST3), is defined as $$f(y|\mu,\sigma,\nu, \tau)=\frac{1}{c} \left[ 1+ \frac{z}{(a+b +z^2)^{1/2}} \right]^{a+1/2} \left[ 1- \frac{z}{(a+b+z^2)^{1/2}}\right]^{b+1/2}$$ where $c=z^{a +b-1} (a+b)^{1/2} B(a,b)$, and $B(a,b)=\Gamma(a)\Gamma(b)/ \Gamma(a+b)$ and $z=(y-\mu)/\sigma$ and $\nu=(a-b)/\left[ab(a+b) \right]^{1/2}$ and $\tau=2/(a+b)$ for $-\infty\infty$, $-\infty<\mu>\infty$, $\sigma>0$, $-\infty<\nu>\infty$ and $\tau>0$.

References

Jones, M.C. and Faddy, M. J. (2003) A skew extension of the t distribution, with applications. Journal of the Royal Statistical Society, Series B, 65, pp 159-174. Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554. Stasinopoulos D. M. Rigby R. A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.londonmet.ac.uk/gamlss/).

See Also

gamlss, gamlss.family, BCCG, GA, IG LNO

Examples

Run this code
y<- rST3(100, mu=10, nu=1, sigma=3)
hist(y)
m1<-gamlss(y~1, family=ST3) 
plot(m1)
curve(dST3(y=x, mu=300 ,sigma=35,nu=100), 100, 600, 
 main = "The ex-GAUS  density mu=300 ,sigma=35,nu=100")
plot(function(x) pST3(x, mu=300,sigma=35,nu=100), 100, 600, 
 main = "The ex-GAUS  cdf mu=300, sigma=35, nu=100")

Run the code above in your browser using DataLab