Usage
BEINF(mu.link = "logit", sigma.link = "logit", nu.link = "log",
tau.link = "log")
dBEINF(x, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1,
log = FALSE)
pBEINF(q, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1,
lower.tail = TRUE, log.p = FALSE)
qBEINF(p, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1,
lower.tail = TRUE, log.p = FALSE)
rBEINF(n, mu = 0.5, sigma = 0.1, nu = 0.1, tau = 0.1)
plotBEINF(mu = 0.5, sigma = 0.5, nu = 0.5, tau = 0.5,
from = 0.001, to = 0.999, n = 101, ...)
meanBEINF(obj)
Arguments
mu.link
the mu
link function with default logit
sigma.link
the sigma
link function with default logit
nu.link
the nu
link function with default log
tau.link
the tau
link function with default log
mu
vector of location parameter values
sigma
vector of scale parameter values
nu
vector of parameter values modelling the probability at zero
tau
vector of parameter values modelling the probability at one
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are P[X <= x],="" otherwise,="" p[x=""> x]=>
p
vector of probabilities.
n
number of observations. If length(n) > 1
, the length is
taken to be the number required
from
where to start plotting the distribution from
to
up to where to plot the distribution
...
other graphical parameters for plotting