dST3
, pST3
, qST3
and rST3
define the density, distribution function,
quantile function and random generation for the skew t distribution type 3.ST1(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link="log")
dST1(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
pST1(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
qST1(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
rST1(n, mu = 0, sigma = 1, nu = 0, tau = 2)
ST2(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log")
dST2(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE)
pST2(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
qST2(p, mu = 1, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE)
rST2(n, mu = 0, sigma = 1, nu = 0, tau = 2)
ST3(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log")
dST3(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE)
pST3(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
qST3(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
rST3(n, mu = 0, sigma = 1, nu = 1, tau = 10)
ST4(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log")
dST4(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE)
pST4(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
qST4(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE)
rST4(n, mu = 0, sigma = 1, nu = 1, tau = 10)
ST5(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log")
dST5(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE)
pST5(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE)
qST5(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE)
rST5(n, mu = 0, sigma = 1, nu = 0, tau = 1)
mu.link
, with "identity" link as the default for the mu
parameter.
Other links are "$1/mu^2$" and "log"sigma.link
, with "log" link as the default for the sigma
parameter.
Other links are "inverse" and "identity"nu.link
, with "identity" link as the default for the nu
parameter.
Other links are "$1/mu^2$" and "log"nu.link
, with "log" link as the default for the nu
parameter.
Other links are "inverse", "identity"mu
parameter valuesnu
parameter valuestau
parameter valueslength(n) > 1
, the length is
taken to be the number requiredST1()
, ST2()
, ST3()
, ST4()
and ST5()
return a gamlss.family
object
which can be used to fit the skew t type 1-5 distribution in the gamlss()
function.
dST1()
, dST2()
, dST3()
, dST4()
and dST5()
give the density functions,
pST1()
, pST2()
, pST3()
, pST4()
and pST5()
give the cumulative distribution functions,
qST1()
, qST2()
, qST3()
, qST4()
and qST5()
give the quantile function, and
rST1()
, rST2()
, rST3()
, rST4()
and rST3()
generates random deviates.ST1
), Azzalini (1986) is defined as
$$f(y|\mu,\sigma,\nu, \tau)=\frac{z}{\sigma} \mbox{\hspace{0.1cm}}f_z(z) \mbox{\hspace{0.1cm}} F_z(\nu z)$$
for $-\inftyST2
), Azzalini and Capitano (2003),
is defined as
$$f(y|\mu,\sigma,\nu,\frac{z}{\sigma} \mbox{\hspace{0.1cm}} f_{z_1}(z) \mbox{\hspace{0.1cm}} F_{z_2}(w) \tau)=$$
for $-\inftyST4
), is defined in Chapter of the
GAMLSS manual.
The probability density function of the skew t distribution type 5, (ST5
), is defined as
$$f(y|\mu,\sigma,\nu, \tau)=\frac{1}{c} \left[ 1+ \frac{z}{(a+b +z^2)^{1/2}} \right]^{a+1/2} \left[ 1- \frac{z}{(a+b+z^2)^{1/2}}\right]^{b+1/2}$$
where $c=2^{a +b-1} (a+b)^{1/2} B(a,b)$, and
$B(a,b)=\Gamma(a)\Gamma(b)/ \Gamma(a+b)$ and
$z=(y-\mu)/\sigma$ and
$\nu=(a-b)/\left[ab(a+b) \right]^{1/2}$
and
$\tau=2/(a+b)$
for $-\inftygamlss.family
, BCCG
, GA
,
IG
LNO
y<- rST5(200, mu=5, sigma=1, nu=.1)
hist(y)
curve(dST5(x, mu=30 ,sigma=5,nu=-1), -50, 50, main = "The ST5 density mu=30 ,sigma=5,nu=1")
# library(gamlss)
# m1<-gamlss(y~1, family=ST1)
# m2<-gamlss(y~1, family=ST2)
# m3<-gamlss(y~1, family=ST3)
# m4<-gamlss(y~1, family=ST4)
# m5<-gamlss(y~1, family=ST5)
# GAIC(m1,m2,m3,m4,m5)
Run the code above in your browser using DataLab