Learn R Programming

gamlss.dist (version 4.3-6)

flexDist: Non-parametric pdf from limited information data

Description

This is an attempt to create a distribution function if the only existing information is the quantiles or expectiles of the distribution.

Usage

flexDist(quantiles = list(values=c(-1.96,0,1.96), prob=c(0.05, .50, 0.95)), expectiles = list(), lambda = 10, kappa = 10, delta = 1e-07, order = 3, n.iter = 200, plot = TRUE, no.inter = 100, lower = NULL, upper = NULL, perc.quant = 0.3, ...)

Arguments

quantiles
a list with components values and prob
expectiles
a list with components values and prob
lambda
smoothing parameter for the log-pdf
kappa
smoothing parameter for log concavity
delta
smoothing parameter for ridge penalty
order
the order of the penalty for log-pdf
n.iter
maximum number of iterations
plot
whether to plot the result
no.inter
How many discrete probabilities to evaluate
lower
the lower value of the x
upper
the upper value of the x
perc.quant
how far from the quantile should go out to define the limit of x if not set by lower or upper
...
additional arguments

Value

Returns a list with components
pdf
the hights of the fitted pdf, the sum of it multiplied by the Dx should add up to 1 i.e. sum(object$pdf*diff(object$x)[1])
cdf
the fitted cdf
x
the values of x where the discretise distribution is defined
pFun
the cdf of the fitted non-parametric distribution
qFun
the inverse cdf function of the fitted non-parametric distribution
rFun
a function to generate a random sample from the fitted non-parametric distribution

References

Eilers, P. H. C., Voudouris, V., Rigby R. A., Stasinopoulos D. M. (2012) Estimation of nonparametric density from sparse summary information, under review. Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

histSmo

Examples

Run this code
# Normal
r1<-flexDist(quantiles=list(values=qNO(c(0.05, 0.25, 0.5,0.75, 0.95), mu=0, 
             sigma=1), prob=c( 0.05, 0.25, 0.5,0.75,0.95 )), 
             no.inter=200, lambda=10,  kappa=10, perc.quant=0.3)
# GAMMA
r1<-flexDist(quantiles=list(values=qGA(c(0.05,0.25, 0.5,0.75,0.95), mu=1, 
       sigma=.8), prob=c(0.05,0.25, 0.5,0.75,0.95)), 
       expectiles=list(values=1, prob=0.5),  lambda=10, 
       kappa=10, lower=0, upper=5)# 

Run the code above in your browser using DataLab