The function WARING()
defines the Waring distribution, a two parameter
distribution, for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
, with mean equal to the parameter mu
and scale parameter sigma
. The functions dWARING
, pWARING
, qWARING
and rWARING
define the density, distribution function, quantile function and random generation for the WARING
parameterization of the Waring distribution.
WARING(mu.link = "log", sigma.link = "log")
dWARING(x, mu = 2, sigma = 2, log = FALSE)
pWARING(q, mu = 2, sigma = 2, lower.tail = TRUE, log.p = FALSE)
qWARING(p, mu = 2, sigma = 2, lower.tail = TRUE, log.p = FALSE,
max.value = 10000)
rWARING(n, mu = 2, sigma = 2)
Defines the mu.link
, with "log" link as the default for the mu parameter
Defines the sigma.link
, with "log" link as the default for the sigma parameter
vector of (non-negative integer) quantiles.
vector of quantiles.
vector of probabilities.
number of random values to return.
vector of positive mu
values.
vector of positive sigma
values.
logical; if TRUE
(default) probabilities are
logical; if TRUE
probabilities p are given as log(p).
constant; generates a sequence of values for the cdf function.
Returns a gamlss.family
object which can be used to fit a Waring distribution in the gamlss()
function.
The Waring distribution has density,
Wimmer, G. and Altmann, G. (1999) Thesaurus of univariate discrete probability distributions. Stamm.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
# NOT RUN {
par(mfrow=c(2,2))
y<-seq(0,20,1)
plot(y, dWARING(y), type="h")
q <- seq(0, 20, 1)
plot(q, pWARING(q), type="h")
p<-seq(0.0001,0.999,0.05)
plot(p , qWARING(p), type="s")
dat <- rWARING(100)
hist(dat)
#summary(gamlss(dat~1, family=WARING))
# }
Run the code above in your browser using DataLab