BCT
Box-Cox t distribution for fitting a GAMLSS
The function BCT()
defines the Box-Cox t distribution, a four parameter distribution,
for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
. The functions dBCT
,
pBCT
, qBCT
and rBCT
define the density, distribution function, quantile function and random
generation for the Box-Cox t distribution.
[The function BCTuntr()
is the original version of the function suitable only for the untruncated BCT distribution].
See Rigby and Stasinopoulos (2003) for details.
The function BCT
is identical to BCT
but with log link for mu.
- Keywords
- distribution, regression
Usage
BCT(mu.link = "identity", sigma.link = "log", nu.link = "identity",
tau.link = "log")
BCTo(mu.link = "log", sigma.link = "log", nu.link = "identity",
tau.link = "log")
BCTuntr(mu.link = "identity", sigma.link = "log", nu.link = "identity",
tau.link = "log")
dBCT(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE)
pBCT(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)
qBCT(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)
rBCT(n, mu = 5, sigma = 0.1, nu = 1, tau = 2)
dBCTo(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE)
pBCTo(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)
qBCTo(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)
rBCTo(n, mu = 5, sigma = 0.1, nu = 1, tau = 2)
Arguments
- mu.link
Defines the
mu.link
, with "identity" link as the default for themu
parameter. Other links are "inverse", "log" and "own"- sigma.link
Defines the
sigma.link
, with "log" link as the default for thesigma
parameter. Other links are "inverse","identity", "own"- nu.link
Defines the
nu.link
, with "identity" link as the default for thenu
parameter. Other links are "inverse", "log", "own"- tau.link
Defines the
tau.link
, with "log" link as the default for thetau
parameter. Other links are "inverse", "identity" and "own"- x,q
vector of quantiles
- mu
vector of location parameter values
- sigma
vector of scale parameter values
- nu
vector of
nu
parameter values- tau
vector of
tau
parameter values- log, log.p
logical; if TRUE, probabilities p are given as log(p).
- lower.tail
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
- p
vector of probabilities.
- n
number of observations. If
length(n) > 1
, the length is taken to be the number required
Details
The probability density function of the untruncated Box-Cox t distribution, BCTuntr
, is given by
$$f(y|\mu,\sigma,\nu,\tau)=\frac{y^{\nu-1}}{\mu^{\nu}\sigma} \frac{\Gamma[(\tau+1)/2]}{\Gamma(1/2) \Gamma(\tau/2) \tau^{0.5}} [1+(1/\tau)z^2]^{-(\tau+1)/2}$$
where if \(\nu \neq 0\) then \(z=[(y/\mu)^{\nu}-1]/(\nu \sigma)\) else \(z=\log(y/\mu)/\sigma\),
for \(y>0\), \(\mu>0\), \(\sigma>0\), \(\nu=(-\infty,+\infty)\) and \(\tau>0\).
The Box-Cox t distribution, BCT
, adjusts the above density \(f(y|\mu,\sigma,\nu,\tau)\) for the
truncation resulting from the condition \(y>0\). See Rigby and Stasinopoulos (2003) for details.
Value
BCT()
returns a gamlss.family
object which can be used to fit a Box Cox-t distribution in the gamlss()
function.
dBCT()
gives the density, pBCT()
gives the distribution
function, qBCT()
gives the quantile function, and rBCT()
generates random deviates.
Note
\(\mu\) is the median of the distribution, \(\sigma(\frac{\tau}{\tau-2})^{0.5}\)
is approximate the coefficient of variation (for small \(\sigma\) and moderate nu>0
and moderate or large \(\tau\)),
\(\nu\) controls the skewness and \(\tau\) the kurtosis of the distribution
Warning
The use BCTuntr
distribution may be unsuitable for some combinations of the parameters (mainly for large \(\sigma\))
where the integrating constant is less than 0.99. A warning will be given if this is the case.
The BCT
distribution is suitable for all combinations of the parameters within their ranges
[i.e. \(\mu>0,\sigma>0, \nu=(-\infty,\infty) {\rm and} \tau>0\) ]
References
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R.A. Stasinopoulos, D.M. (2006). Using the Box-Cox t distribution in GAMLSS to mode skewnees and and kurtosis. to appear in Statistical Modelling.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in http://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
See Also
Examples
# NOT RUN {
BCT() # gives information about the default links for the Box Cox t distribution
# library(gamlss)
#data(abdom)
#h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=BCT, data=abdom) #
#plot(h)
plot(function(x)dBCT(x, mu=5,sigma=.5,nu=1, tau=2), 0.0, 20,
main = "The BCT density mu=5,sigma=.5,nu=1, tau=2")
plot(function(x) pBCT(x, mu=5,sigma=.5,nu=1, tau=2), 0.0, 20,
main = "The BCT cdf mu=5, sigma=.5, nu=1, tau=2")
# }