This function PO
defines the Poisson distribution, an one parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
. The functions dPO
, pPO
, qPO
and rPO
define the density, distribution function, quantile function and random
generation for the Poisson, PO()
, distribution.
PO(mu.link = "log")
dPO(x, mu = 1, log = FALSE)
pPO(q, mu = 1, lower.tail = TRUE, log.p = FALSE)
qPO(p, mu = 1, lower.tail = TRUE, log.p = FALSE)
rPO(n, mu = 1)
Defines the mu.link
, with "log" link as the default for the mu parameter
vector of (non-negative integer) quantiles
vector of positive means
vector of probabilities
vector of quantiles
number of random values to return
logical; if TRUE, probabilities p are given as log(p)
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
returns a gamlss.family
object which can be used to fit a Poisson distribution in the gamlss()
function.
Definition file for Poisson distribution.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also https://www.gamlss.com/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
gamlss.family
, NBI
, NBII
,
SI
, SICHEL
# NOT RUN {
PO()# gives information about the default links for the Poisson distribution
# fitting data using PO()
# plotting the distribution
plot(function(y) dPO(y, mu=10 ), from=0, to=20, n=20+1, type="h")
# creating random variables and plot them
tN <- table(Ni <- rPO(1000, mu=5))
r <- barplot(tN, col='lightblue')
# library(gamlss)
# data(aids)
# h<-gamlss(y~cs(x,df=7)+qrt, family=PO, data=aids) # fits the constant+x+qrt model
# plot(h)
# pdf.plot(family=PO, mu=10, min=0, max=20, step=1)
# }
Run the code above in your browser using DataLab