The function DBI()
defines the double binomial distribution, a two parameters distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
. The functions dDBI
, pDBI
, qDBI
and rDBI
define the density, distribution function, quantile function and random generation for the double binomial, DBI()
, distribution. The function GetBI_C
calculates numericaly the constant of proportionality needed for the pdf to sum up to 1.
DBI(mu.link = "logit", sigma.link = "log")
dDBI(x, mu = 0.5, sigma = 1, bd = 2, log = FALSE)
pDBI(q, mu = 0.5, sigma = 1, bd = 2, lower.tail = TRUE,
log.p = FALSE)
qDBI(p, mu = 0.5, sigma = 1, bd = 2, lower.tail = TRUE,
log.p = FALSE)
rDBI(n, mu = 0.5, sigma = 1, bd = 2)
GetBI_C(mu, sigma, bd)
the link function for mu
with default log
the link function for sigma
with default log
vector of (non-negative integer) quantiles
vector of binomial denominator
vector of probabilities
the mu
parameter
the sigma
parameter
logical; if TRUE
(default), probabilities are P[X <= x], otherwise, P[X > x]
logical; if TRUE
, probabilities p are given as log(p)
how many random values to generate
The function DBI
returns a gamlss.family
object which can be used to fit a double binomial distribution in the gamlss()
function.
The definition for the Double Poisson distribution first introduced by Efron (1986) is:
$$p_Y(y|n, \mu,\sigma)= frac{1}{C(n,\mu,\sigma)} \frac{\Gamma(n+1)}{\Gamma(y+1)\Gamma(n-y+1)} \frac{y^y \left(n-y \right)^{n-y}}{n^n}
\frac{n^{n/\sigma} \mu^{y/\sigma} \left( 1-\mu\right)^{(n-y)/\sigma}}
{y^{y/\sigma} \left( n-y\right)^{(n-y)/\sigma}}$$
for \(y=0,1,2,\ldots,\infty\), \(\mu>0\) and \(\sigma>0\) where \(C\) is the constant of proportinality which is calculated numerically using the function GetBI_C()
.
Efron, B., 1986. Double exponential families and their use in generalized linear Regression. Journal of the American Statistical Association 81 (395), 709-721.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, 10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, 10.18637/jss.v023.i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC. 10.1201/b21973
(see also https://www.gamlss.com/).
# NOT RUN {
DBI()
x <- 0:20
# underdispersed DBI
plot(x, dDBI(x, mu=.5, sigma=.2, bd=20), type="h", col="green", lwd=2)
# binomial
lines(x+0.1, dDBI(x, mu=.5, sigma=1, bd=20), type="h", col="black", lwd=2)
# overdispersed DBI
lines(x+.2, dDBI(x, mu=.5, sigma=2, bd=20), type="h", col="red",lwd=2)
# }
Run the code above in your browser using DataLab