The function boot_coef()
plots in one or multiple pages the results from a boostrap generated by the function BayesianBoot()
, NonParamatricBoot
or nonpar_boot().
The function boot_coef_one()
plots a single parameter.
boot_coef(x, terms = NULL, hist.col = "black",
hist.fill = "white", dens.fill = "#FF6666",
alpha = 0.2, nrow = NULL, ncol = NULL,
plots.per.page = 9, one.by.one = FALSE, title, ...)
boot_coef_one(x, par = 1, rug = TRUE, alpha = 0.2, hist.col = "black",
hist.fill = "white", line.col = "gray",
dens.fill = "#FF6666", title, ...)
Greates a ggplot object
a Bayesian.boot
or NonParametric.boot
object
which terms to plot (default NULL means all terms
which parameter to plot
colour of the border histogram
the colour of the histogram
the colour of the density estimate
transparity constant
how namy rows
how many columns
the maxiimum plots per page
whether single plots
whether rug is required for boot_coef_one()
the vertical line colour for boot_coef_one()
the title
for more argument
Mikis Stasinopoulos
The function plots in one ore multiple pages the results from a boostrap simulation
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
term.plot
# \donttest{
data(aids)
a <- gamlss(y ~ pb(x) + qrt, data = aids, family = NBI)
registerDoParallel(cores = 2)
B1 <- BayesianBoot(a, B=100)
stopImplicitCluster()
boot_coef(B1)
# }
Run the code above in your browser using DataLab