Last chance! 50% off unlimited learning
Sale ends in
The function resid_dtop()
provides single de-trended transformed Owen's plot, Owen (1995), for a GAMLSS fitted objects or any other residual vector (suitable standardised). This is a diagnostic tool for checking whether the normalised quantile residuals are coming from a normal distribution or not.
This could be true if the horizontal line is within the confidence intervals.
The function resid_ecdf()
provides the empirical cumulative distribution function of the residuals.
The function y_ecdf()
provides the empirical cumulative distribution function of any numerical vector y
.
resid_dtop(obj, resid, type = c("Owen", "JW"), conf.level = c("95", "99"),
value = 2, points.col = "steelblue4",
check_overlap = TRUE, title, ylim, ...)
resid_ecdf(obj, resid, type = c("Owen", "JW"), conf.level = c("95", "99"),
value = 2, points.col = "steelblue4",
check_overlap = TRUE, show.outliers = TRUE, title, ...)
y_ecdf(y, type = c("Owen", "JW"), conf.level = c("95", "99"), value = 2,
points.col = "steelblue4", check_overlap = TRUE,
show.outliers = FALSE, from, to, title, ...)
A ggplot is generated
A GAMLSS fitted model
if the object is not specified the residual vector can be given here
a numeric vector
whether to use Owen (1995) or Jager and Wellner (2004) approximate formula
95% (default) or 99% percent confidence interval for the plots
cut of point for large residuals
the colour of the points in the plot
to check for overlap when plotting the observation numbers
required title
whether to shoe the number of an outlier obsrvation
if the y limit should be different from the default max(y)+.1
where to start the ecdf
where to finish the ecdf
further arguments
Mikis Stasinopoulos, Bob Rigby and Fernanda de Bastiani
Jager, L. and Wellner, J. A (2004) A new goodness of fit test: the reversed Berk-Jones statistic, University of Washington, Department of Statistics, Technical report 443.
Owen A. B. (1995) Nonparametric Confidence Bands for a Distribution Function. Journal of the American Statistical Association Vol. 90, No 430, pp. 516-521.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, 1-38.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos, M.D., Kneib, T., Klein, N., Mayr, A. and Heller, G.Z., (2024). Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications (Vol. 56). Cambridge University Press.
(see also https://www.gamlss.com/).
resid_wp
library(ggplot2)
data(abdom)
a<-gamlss(y~pb(x),sigma.fo=~pb(x,1),family=LO,data=abdom)
resid_dtop(a)
resid_ecdf(a)+ stat_function(fun = pNO, args=list(mu=0, sigma=1))
# create a gamma distributed random variable
y <- rGA(1000, mu=3, sigma=1)
gp<- y_ecdf(y)
gp + stat_function(fun = pGA, args=list(mu=3, sigma=1))
Run the code above in your browser using DataLab