Free Access Week-  Data Engineering + BI
Data engineering and BI courses are free!
Free AI Access Week from June 2-8

gamlss.inf (version 1.0-2)

term.plotZadj: Plot regression terms for a specified parameter of a fitted gamlssZadj object

Description

This is a wrapper to function term.plot. term.plotZadj produces term plots for a specified parameter from a gamlssZadjobject.

Usage

term.plotZadj(object, parameter = c("mu", "sigma", "nu", "tau", "xi0"),...)

Value

A plot of fitted terms.

Arguments

object

a gamlssZadj fitted model

parameter

which distribution (or inflation) parameter is required, default parameter="mu"

...

extra arguments, the same of term.plot (except 'what')

Author

Marco Enea, Mikis Stasinopoulos, Bob Rigby and Abu Hossain

Details

see function term.plot

References

Hossain, A., Stasinopoulos, M., Rigby, R. and Enea, M. (2015). Centile estimation for a proportion response variable. Statistics in Medicine, doi: 10.1002/sim.6748.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2003) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also https://www.gamlss.com/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07.

See Also

gamlssZadj

Examples

Run this code

set.seed(3210)
x <- (runif(1000)*4)-2
data(sda)
fmu <- splinefun(sda$x, sda$mu)
curve(fmu, -2,2)
fsigma <- splinefun(sda$x, sda$sigma)
curve(fsigma, -2,2)
fnu <- function(x)
  {f <- splinefun(sda$x, sda$nu)
f(x)/6
}
curve(fnu, -2,2)
set.seed(321)
y0 <- rZAGA(1000, mu=fmu(x), sigma=fsigma(x), nu=fnu(x))
da <- data.frame(y0,x)
g0p <- gamlss(y0~pb(x), sigma.fo=~pb(x), nu.fo=~pb(x), data=da, family=ZAGA)
t0p <- gamlssZadj(y=y0, mu.fo=~pb(x), sigma.fo=~pb(x),data=da,
                  trace=TRUE, xi0.fo=~pb(x), family="GA")

# term.plot for the mu parameter
term.plot(g0p);title("gamlss")
term.plot(t0p$dist,"mu");title("gamlssZadj")
term.plotZadj(t0p,"mu",col.shaded = 3);title("gamlssZadj")



# term.plot for the sigma parameter
term.plot(g0p, "sigma");title("gamlss")
term.plot(t0p$dist,"sigma");title("gamlssZadj")
term.plotZadj(t0p,"sigma",col.shaded = 3);title("gamlssZadj")

# term.plot for the binomial parameter
term.plot(g0p, "nu");title("gamlss")
term.plot(t0p$binom,"mu");title("gamlssZadj")
term.plotZadj(t0p,"xi0",col.shaded = 3);title("gamlssZadj")


Run the code above in your browser using DataLab