This is a control function for `gamlssNP`

function.

```
NP.control(EMcc = 0.001, EMn.cyc = 200, damp = TRUE,
trace = TRUE, plot.opt = 3, ...)
```

Returns a list.

- EMcc
convergence criterion for the EM

- EMn.cyc
number of cycles for the EM

- damp
Not in used

- trace
whether to print the EM iterations

- plot.opt
plotting the

- ...
for extra arguments

Mikis Stasinopoulos

Einbeck, J. Darnell R. and Hinde J. (2006) npmlreg: Nonparametric maximum likelihood estimation for random effect models, R package version 0.34

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion),
*Appl. Statist.*, **54**, part 3, pp 507-554.

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019)
*Distributions for modeling location, scale, and shape: Using GAMLSS in R*, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R.
*Journal of Statistical Software*, Vol. **23**, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.

Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017)
*Flexible Regression and Smoothing: Using GAMLSS in R*, Chapman and Hall/CRC.

Stasinopoulos M.D., Kneib T, Klein N, Mayr A, Heller GZ. (2024) Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications. Cambridge University Press.

(see also https://www.gamlss.com/).

`gamlss`

, `gamlssNP`