Q.stats(obj = NULL, xvar = NULL, resid = NULL, xcut.points = NULL, n.inter = 10,
zvals = TRUE, save = TRUE, plot = TRUE, ...)obj. In this case the function behaves diffently (see details below)c(20,30). If xcut.points=NULL then the n.inter argument is activatedxcut.points=NULL this argument gives the number of intervals in which the x-variable will be split, with default 10TRUE the output matrix contains the individual Z-statistics rather that the Q statisticsTRUE.
In this case the functions produce a matrix giving individual Q (or z) statistics and the final aggregate Q'splot=TRUE it produces also an graphical represenation of the table.Q.stats behaves differently depending whether the obj or the resid argument is set. The obj argument produces the Q-statistics (or Z-statistics) table appropriate for centile estimation (therefore it expect a reasonable large number of observations). The argument resid allows any model residuals, (not necessary GAMLSS), suitable standardised and is appropriate for any size of data. The resulting table contains only the individuals Z-statistics.gamlss, centiles.split, wpdata(abdom)
h<-gamlss(y~pb(x), sigma.formula=~pb(x), family=BCT, data=abdom)
Q.stats(h,xvar=abdom$x,n.inter=8)
Q.stats(h,xvar=abdom$x,n.inter=8,zvals=FALSE)
Q.stats(resid=resid(h), xvar=abdom$x, n.inter=5)
rm(h)Run the code above in your browser using DataLab