Q.stats(obj = NULL, xvar = NULL, resid = NULL, xcut.points = NULL, n.inter = 10,
zvals = TRUE, save = TRUE, plot = TRUE, digits.xvar = getOption("digits"),
...)
obj
. In this case the function behaves diffently (see details below)c(20,30)
. If xcut.points=NULL
then the n.inter
argument is activatedxcut.points=NULL
this argument gives the number of intervals in which the x-variable will be split, with default 10TRUE
the output matrix contains the individual Z-statistics rather that the Q statisticsTRUE
.
In this case the functions produce a matrix giving individual Q (or z) statistics and the final aggregate Q'sxvar
in the plotplot=TRUE
it produces also an graphical represenation of the table.Q.stats
behaves differently depending whether the obj
or the resid
argument is set. The obj
argument produces the Q-statistics (or Z-statistics) table appropriate for centile estimation (therefore it expect a reasonable large number of observations). The argument resid
allows any model residuals, (not necessary GAMLSS), suitable standardised and is appropriate for any size of data. The resulting table contains only the individuals Z-statistics.Royston P. and Wright E. M. (2000) Goodness of fit statistics for the age-specific reference intervals. Statistics in Medicine, 19, pp 2943-2962.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R.
Accompanying documentation in the current GAMLSS help files, (see also
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R.
Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007,
gamlss
, centiles.split
, wp
data(abdom)
h<-gamlss(y~pb(x), sigma.formula=~pb(x), family=BCT, data=abdom)
Q.stats(h,xvar=abdom$x,n.inter=8)
Q.stats(h,xvar=abdom$x,n.inter=8,zvals=FALSE)
Q.stats(resid=resid(h), xvar=abdom$x, n.inter=5)
rm(h)
Run the code above in your browser using DataLab