library(gamselBayes)
# Generate some regression-type data:
set.seed(1) ; n <- 5000 ; numPred <- 15
Xgeneral <- as.data.frame(matrix(runif(n*numPred),n,numPred))
names(Xgeneral) <- paste("x",1:numPred,sep="")
y <- as.vector(0.1 + 0.4*Xgeneral[,1] - 2*pnorm(3-6*Xgeneral[,2])
- 0.9*Xgeneral[,4] + cos(3*pi*Xgeneral[,5]) + 2*rnorm(n))
# Obtain and assess a gamselBayes() fit:
fitOrig <- gamselBayes(y,Xgeneral = Xgeneral)
summary(fitOrig) ; plot(fitOrig)
print(fitOrig$effectTypesHat)
# Update the gamselBayes() fit object with a new value of
# the "lowerMakesSparser" parameter:
fitUpdated <- gamselBayesUpdate(fitOrig,lowerMakesSparser = 0.6)
summary(fitUpdated) ; plot(fitUpdated)
print(fitUpdated$effectTypesHat)
Run the code above in your browser using DataLab