Learn R Programming

gap (version 0.4)

genecounting: Gene counting for haplotype analysis

Description

Gene counting for haplotype analysis with missing data

Usage

genecounting(data,weight=NULL,convll,handle.miss,eps,maxit,pl)

Arguments

data
genotype table
weight
a column of frequencies
convll
set convergence criteria according to log-likelihood, if its value set to 1
handle.miss
to handle missing data, if its value set to 1
eps
the actual convergence criteria, with default value 1e-5
maxit
maximum number of iterations, with default value 50
pl
criteria for trimming haplotypes according to posterior probabilities

Value

  • The returned value is a list containing:
  • hhaplotype frequency estimates under linkage disequilibrium
  • h0haplotype frequency estimates under linkage equilibrium
  • probgenotype probability estimates
  • lnl0log-likelihood under linkage equilibrium
  • lnl1log-likelihood under linkage disequilibrium
  • hapidunique haplotype identifier (defunct, see gc.em)
  • npusrnumber of parameters according user-given alleles
  • npdatnumber of parameters according to observed
  • htrtabledesign matrix for haplotype trend regression (defunct, see gc.em)
  • iternumber of iterations used in gene counting
  • convergea flag indicating convergence status of gene counting
  • Dprimea multilocus version of Hedrick's D'

References

Zhao, J. H., Lissarrague, S., Essioux, L. and P. C. Sham (2002). Gene-counting for haplotype analysis with missing genotypes. Bioinformatics 18(12):1694-1695

Zhao, J. H. and P. C. Sham (2003). Generic number systems and haplotype analysis. Comp Meth Prog Biomed 70: 1-9

See Also

gc.em, kbyl

Examples

Run this code
# Now we use the HLA data for testing
data(hla)
hla.gc<-genecounting(hla[,3:8])
summary(hla.gc)
hla.gc$lnl0
hla.gc$lnl1

# Now we use ALDH2 data
data(aldh2)
aldh2.gc<-genecounting(aldh2[,3:6],handle.miss=1)
summary(aldh2.gc)
aldh2.gc$lnl0
aldh2.gc$lnl1

Run the code above in your browser using DataLab