Learn R Programming

gap (version 0.8-2)

hwe: Hardy-Weinberg equlibrium test

Description

Hardy-Weinberg equilibrium test

Usage

hwe(data,yates.correct=FALSE, miss.val=0)
hwe(data,is.genotype=FALSE, yates.correct=FALSE, miss.val=0)
hwe(data,is.count=FALSE, yates.correct=FALSE, miss.val=0)

Arguments

data
a rectangular data containing the genotype, or an array of genotype counts
is.genotype
A flag indicating if the data is an array of genotypes
is.count
A flag indicating if the data is an array of genotypes count
yates.correct
A flag indicating if Yates' correction is used for Pearson $\chi^2$ statistic
miss.val
A list of missing values

Value

  • The returned value is a list containing:
  • x2Pearson $\chi^2$
  • p.x2p value for $\chi^2$
  • lrtLog-likelihood ratio test statistic
  • p.lrtp value for lrt
  • dfDegree(s) of freedom
  • rho$\chi^2/N$ the effect size

synopsis

hwe(data, is.count=FALSE, is.genotype=FALSE, yates.correct=FALSE, miss.val=0)

Details

This function obtains Hardy-Weinberg equilibrium test statistics. It can handle data coded as allele numbers (default), genotype identifiers (by setting is.genotype=TRUE) and counts corresponding to individual genotypes (by setting is.count=TRUE) ; the latter does not need is.genotype to be specified but requires that genotype counts for all possible genotypes, i.e. n(n+1)/2, where n is the number of alleles.

See Also

hwe.hardy

Examples

Run this code
a <- c(3,2,2)
a.out <- hwe(a,is.genotype=TRUE)
a.out
a.out <- hwe(a,is.count=TRUE)
a.out

Run the code above in your browser using DataLab